\
JAKARTA EE

Jakarta Contexts and Dependency
Injection
Jakarta Contexts and Dependency Injection Specification Project

5.0, October 15, 2025: Draft

Table of Contents

Preface
Evaluation license
Organisation of this document
Major changes
Jakarta Contexts and Dependency Injection 4.1
Jakarta Contexts and Dependency Injection 4.0
Jakarta Contexts and Dependency Injection 3.0
Introduction
1. Architecture
1.1. Contracts
1.2. Relationship to other specifications
1.2.1. Relationship to the Jakarta EE platform specification
1.2.2. Relationship to Jakarta Enterprise Bean
1.2.3. Relationship to Jakarta Dependency Injection
1.2.4. Relationship to Jakarta Interceptors
1.2.5. Relationship to Jakarta Faces
1.2.6. Relationship to Jakarta Validation
1.3. Introductory examples
1.3.1. Jakarta Faces example
1.3.2. Jakarta Enterprise Bean example
1.3.3. Jakarta EE component environment example
1.3.4. Event example
1.3.5. Injection point metadata example
1.3.6. Interceptor example
1.3.7. Decorator example
PartI- Core CDI
Structure
Part I.A - CDI Lite
2. Concepts
2.1. Functionality provided by the container to the bean
2.2. Bean types
2.2.1. Legal bean types
2.2.2. Restricting the bean types of a bean
2.2.3. Typecasting between bean types
2.3. Qualifiers
2.3.1. Built-in qualifier types
2.3.2. Defining new qualifier types
2.3.3. Declaring the qualifiers of a bean

0 00 00 N N N0 N o o o0 ok wWwNdNDN R R R e

N DN DN DN NN DN DN DN NN PR 2R ===
N 0 O Uk R W W NN RO O U NN e

2.3.4. Specifying qualifiers of an injected field

2.3.5. Specifying qualifiers of a method or constructor parameter

2.3.6. Repeating qualifiers
2.4. Scopes
2.4.1. Built-in scope types
2.4.2. Defining new scope types
2.4.3. Declaring the bean scope
2.4.4. Default scope
2.5. Default bean discovery mode
2.5.1. Bean defining annotations
2.6. Bean names
2.6.1. Declaring the bean name
2.6.2. Default bean names
2.6.3. Beans with no name
2.7. Alternatives
2.7.1. Declaring an alternative
2.8. Reserves
2.8.1. Declaring a reserve
2.9. Stereotypes
2.9.1. Defining new stereotypes
2.9.2. Declaring the stereotypes for a bean

2.9.3. Built-in stereotypes

2.10. Problems detected automatically by the container

3. Programming model

3.1. Managed beans

3.1.1. Which Java classes are managed beans?

3.1.2. Bean types of a managed bean

3.1.3. Declaring a managed bean

3.1.4. Default bean name for a managed bean
3.2. Producer methods

3.2.1. Bean types of a producer method

3.2.2. Declaring a producer method

3.2.3. Default bean name for a producer method
3.3. Producer fields

3.3.1. Bean types of a producer field

3.3.2. Declaring a producer field

3.3.3. Default bean name for a producer field
3.4. Disposer methods

3.4.1. Disposed parameter of a disposer method

3.4.2. Declaring a disposer method

3.4.3. Disposer method resolution

28
28
29
30
30
31
31
32
32
33
33
34
34
34
34
35
35
35
35
36
39
39
40
41
41
41
42
42
43
43
43
44
45
45
46
46
46
47
47
47
48

3.5. Bean constructors

3.5.1. Declaring a bean constructor
3.6. Injected fields

3.6.1. Declaring an injected field
3.7. Initializer methods

3.7.1. Declaring an initializer method
3.8. The default qualifier at injection points
3.9. The qualifier @Named at injection points

3.10. Unproxyable bean types

4, Inheritance

4.1. Inheritance of type-level metadata

4.2. Inheritance of member-level metadata

5. Dependency injection and lookup

5.1. Modularity
5.1.1. Declaring selected alternatives
5.1.2. Declaring selected reserves
5.1.3. Enabled and disabled beans
5.1.4. Inter-module injection
5.2. Typesafe resolution
5.2.1. Performing typesafe resolution
5.2.2. Unsatisfied and ambiguous dependencies
5.2.3. Legal injection point types
5.2.4. Assignability of raw and parameterized types
5.2.5. Primitive types and null values
5.2.6. Qualifier annotations with members
5.2.7. Multiple qualifiers
5.3. Name resolution
5.3.1. Ambiguous names
5.4. Client proxies
5.4.1. Client proxy invocation
5.5. Dependency injection
5.5.1. Injection using the bean constructor
5.5.2. Injection of fields and initializer methods
5.5.3. Destruction of dependent objects
5.5.4. Invocation of producer or disposer methods
5.5.5. Access to producer field values
5.5.6. Invocation of observer methods
5.5.7. Injection point metadata
5.5.8. Bean metadata
5.6. Programmatic lookup

5.6.1. The Instance interface

49
49
50
50
51
51
51
53
53
54
54
35
57
57
57
58
58
58
59
59
59
60
60
61
61
62
63
63
64
65
65
65
65
66
66
66
66
67
68
69
70

5.6.2. The built-in Instance
5.6.3. Using AnnotationLiteral and Typeliteral
5.6.4. Built-in annotation literals
6. Scopes and contexts
6.1. The Contextual interface
6.1.1. The CreationalContext interface
6.2. The Context interface
6.3. Normal scopes and pseudo-scopes
6.4. Dependent pseudo-scope
6.4.1. Dependent objects
6.4.2. Destruction of objects with scope @Dependent
6.5. Contextual instances and contextual references
6.5.1. The active context object for a scope
6.5.2. Activating Built In Contexts
6.5.3. Contextual instance of a bean
6.5.4. Contextual reference for a bean
6.5.5. Contextual reference validity
6.5.6. Injectable references
6.5.7. Injectable reference validity
6.6. Context management for built-in scopes
6.6.1. Request context lifecycle
6.6.2. Application context lifecycle
6.7. Context management for custom scopes
7. Lifecycle of contextual instances
7.1. Restriction upon bean instantiation
7.2. Container invocations and interception
7.3. Lifecycle of contextual instances
7.3.1. Lifecycle of managed beans
7.3.2. Lifecycle of producer methods
7.3.3. Lifecycle of producer fields
8. Interceptor bindings
8.1. Interceptor binding types
8.1.1. Interceptor bindings for stereotypes
8.2. Declaring the interceptor bindings of an interceptor
8.3. Binding an interceptor to a bean
8.4. Interceptor resolution
9. Events
9.1. Event types and qualifier types
9.2. Firing events
9.2.1. Firing events synchronously

9.2.2. Firing events asynchronously

74
74

75
77
77
77
78
79
80
81
81
81
81
82
83
83
84
84
84
85
85
85
86
87
87
88
89
89
89
89
91
91
91
92
92
92
93
93
93
94
94

9.2.3. The Event interface
9.2.4. The built-in Event

9.3. Observer resolution
9.3.1. Assignability of type variables, raw and parameterized types
9.3.2. Event qualifier types with members
9.3.3. Multiple event qualifiers

9.4. Observer methods
9.4.1. Event parameter of an observer method
9.4.2. Declaring an observer method
9.4.3. The EventMetadata interface
9.4.4. Conditional observer methods
9.4.5. Transactional observer methods

9.5. Observer notification
9.5.1. Handling exceptions thrown during an asynchronous event
9.5.2. Observer ordering
9.5.3. Observer method invocation context

9.6. Observable container lifecycle events
9.6.1. Startup event
9.6.2. Shutdown event

10. Method invokers

10.1. Building an Invoker

10.2. Using an Invoker
10.2.1. Behavior of invoke()
10.2.2. Example

10.3. Using InvokerBuilder
10.3.1. Configuring invoker lookups

11. Programmatic access to container

11.1. The BeanContainer object
11.1.1. Obtaining a reference to the CDI container
11.1.2. Obtaining a contextual reference for a bean
11.1.3. Obtaining a CreationalContext
11.1.4. Obtaining a Bean by type
11.1.5. Obtaining a Bean by name
11.1.6. Resolving an ambiguous dependency
11.1.7. Firing an event
11.1.8. Observer method resolution
11.1.9. Interceptor resolution
11.1.10. Determining if an annotation is a qualifier type, scope type, stereotype or
interceptor binding type
11.1.11. Obtaining the active Context for a scope
11.1.12. Obtaining Contexts for a scope

95

96

96

97

97

98

99

99
100
101
101
102
102
103
104
104
104
104
105
106
106
106
107
108
109
109
112
112
112
113
113
114
114
114
115
115
115

116
116
116

11.1.13. Obtain an Instance
11.1.14. Assignability of beans and events
11.1.15. Unwrapping a client proxy
12. Build compatible extensions
12.1. The BuildCompatibleExtension interface
12.2. The @Discovery phase
12.3. The @Enhancement phase
12.4. The @Registration phase
12.5. The @Synthesis phase
12.6. The @Validation phase
13. Packaging and deployment
13.1. Bean archives
13.2. Deployment
13.3. Application initialization lifecycle
13.4. Application shutdown lifecycle
13.5. Type and Bean discovery
13.5.1. Type discovery
13.5.2. Bean discovery
Part I.B - CDI Full
14. Scopes in CDI Full
14.1. Built-in scope types in CDI Full
14.2. Bean defining annotations in CDI Full
14.2.1. Built-in stereotypes in CDI Full
15. Inheritance and specialization in CDI Full
15.1. Specializing a managed bean
15.2. Specializing a producer method
15.3. Specialization
15.3.1. Direct and indirect specialization
16. Dependency injection and lookup in CDI Full
16.1. Modularity in CDI Full
16.1.1. Declaring selected alternatives in CDI Full
16.1.2. Enabled and disabled beans in CDI Full
16.1.3. Inconsistent specialization
16.1.4. Inter-module injection in CDI Full
16.2. Typesafe resolution in CDI Full
16.2.1. Performing typesafe resolution in CDI Full
16.2.2. Unsatisfied and ambiguous dependencies in CDI Full
16.2.3. Assignability of raw and parameterized types in CDI Full
16.3. Client proxies in CDI Full
16.4. Dependency injection in CDI Full
16.4.1. Injection point metadata in CDI Full

116
117

117
118
118
119
119
122
124
125
127
127
128
128
128
128
129
129
130
131
131
131
131
132
132
132
133
134
136
136
136
137
137
138
138
138
138
138
139
139
139

16.4.2. Bean metadata in CDI Full
16.5. Programmatic lookup in CDI Full
16.5.1. The Instance interface in CDI Full
16.5.2. The built-in Instance in CDI Full
17. Scopes and contexts in CDI Full
17.1. The Contextual interface in CDI Full
17.2. The Context interface in CDI Full
17.3. Dependent pseudo-scope in CDI Full
17.3.1. Dependent objects in CDI Full
17.4. Contextual instances and contextual references in CDI Full
17.4.1. Contextual instance of a bean in CDI Full
17.5. Passivation and passivating scopes
17.5.1. Passivation capable beans
17.5.2. Passivation capable injection points
17.5.3. Passivation capable dependencies
17.5.4. Passivating scopes
17.5.5. Validation of passivation capable beans and dependencies
17.6. Context management for built-in scopes in CDI Full
17.6.1. Session context lifecycle
17.6.2. Conversation context lifecycle
17.6.3. The Conversation interface
17.7. Context management for custom scopes in CDI Full
18. Lifecycle of contextual instances in CDI Full
18.1. Container invocations and interception in CDI Full
19. Interceptor bindings in CDI Full
19.1. Binding an interceptor to a bean in CDI Full
19.2. Interceptor enablement and ordering in CDI Full
19.3. Interceptor resolution in CDI Full
20. Decorators
20.1. Decorator beans
20.1.1. Declaring a decorator
20.1.2. Decorator delegate injection points
20.1.3. Decorated types of a decorator
20.2. Decorator enablement and ordering
20.2.1. Decorator enablement and ordering for an application
20.2.2. Decorator enablement and ordering for a bean archive
20.3. Decorator resolution
20.3.1. Assignability of raw and parameterized types for delegate injection points
20.4. Decorator invocation
20.5. Additional decorator rules

20.5.1. Bean names

139
140
140
140
141
141
141
141
141
141
141
141
142
142
142
143
143
144
144
144
144
145
146
146
147
147
147
148
149
149
149
149
151
151
151
152
152
153
153
154
154

20.5.2. Alternatives
20.5.3. Reserves
20.6. Managed beans
20.7. Producer methods
20.8. Producer fields
20.9. Disposer methods
20.10. Unproxyable bean types
21. Events in CDI Full
21.1. Firing events in CDI Full
21.1.1. The built-in Event in CDI Full
21.2. Observer resolution in CDI Full
21.3. Observer methods in CDI Full
21.3.1. Declaring an observer method in CDI Full
21.4. Observer notification in CDI Full
22. Method invokers in CDI Full
22.1. Building an Invoker in CDI Full
22.2.Using InvokerBuilder in CDI Full
23. Portable extensions
23.1. The Bean interface
23.1.1. The Decorator interface
23.1.2. The Interceptor interface
23.1.3. The ObserverMethod interface
23.1.4. The Prioritized interface
23.2. The Producer and InjectionTarget interfaces
23.3. The BeanManager object
23.3.1. Obtaining a reference to the CDI container in CDI Full
23.3.2. Obtaining an injectable reference
23.3.3. Obtaining non-contextual instance
23.3.4. Obtaining a Bean by type in CDI Full
23.3.5. Obtaining a Bean by name in CDI Full
23.3.6. Obtaining a passivation capable bean by identifier
23.3.7. Validating an injection point
23.3.8. Decorator resolution
23.3.9. Interceptor resolution in CDI Full
23.3.10. Determining if an annotation is a qualifier type, scope type, stereotype or
interceptor binding type in CDI Full
23.3.11. Determining the hash code and equivalence of qualifiers and interceptor
bindings
23.3.12. Obtaining an AnnotatedType for a class
23.3.13. Obtaining an InjectionTarget for a class
23.3.14. Obtaining a Producer for a field or method

154
154
154
154
154
154
155
156
156
156
156
156
156
156
157
157
157
158
158
159
159
160
160
161
162
163
163
163
164
164
164
164
164
165

165

166
166
166
167

23.3.15. Obtaining an InjectionPoint
23.3.16. Obtaining a BeanAttributes
23.3.17. Obtaining a Bean
23.3.18. Obtaining the instance of an Extension
23.3.19. Obtain an InterceptionFactory
23.3.20. Obtain an Instance in CDI Full
23.4. Unified EL integration API
23.5. Alternative metadata sources
23.5.1. AnnotatedTypeConfigurator SPI
23.6. Container lifecycle events
23.6.1. BeforeBeanDiscovery event
23.6.2. AfterTypeDiscovery event
23.6.3. AfterBeanDiscovery event
23.6.4. AfterDeploymentValidation event
23.6.5. BeforeShutdown event
23.6.6. ProcessAnnotatedType event
23.6.7. ProcessInjectionPoint event
23.6.8. ProcessInjectionTarget event
23.6.9. ProcessBeanAttributes event
23.6.10. ProcessBean event
23.6.11. ProcessProducer event
23.6.12. ProcessObserverMethod event
23.7. Configurators interfaces
23.8. The InterceptionFactory interface
24. Packaging and deployment in CDI Full
24.1. Bean archives in CDI Full
24.2. Application initialization lifecycle in CDI Full
24.3. Application shutdown lifecycle in CDI Full
24.4. Type and Bean discovery in CDI Full
24.4.1. Type discovery in CDI Full
24.4.2. Exclude filters
24.4.3. Trimmed bean archive
24.4.4. Bean discovery in CDI Full
Part II - CDI in Java SE
25. Bootstrapping a CDI container in Java SE
25.1. SeContainerInitializer class
25.2. SeContainer interface
26. Scopes and contexts in Java SE
26.1. Context management for built-in scopes in Java SE
26.1.1. Application context lifecycle in Java SE
27. Packaging and deployment in Java SE

167
167

168
168
168
169
169
169
172
175
176
178
179
181
182
182
183
184
185
187
188
189
191
191
193
193
194
195
195
195
195
197
197
199
200
200
202
204
204
204
205

27.1. Bean archive in Java SE
28. Portable extensions in Java SE
28.1. The BeanManager object in Java SE

28.1.1. Obtaining a reference to the CDI container in Java SE

205
206
206
206

Preface

Evaluation license

Specification: Jakarta Contexts and Dependency Injection
Version: 5.0

Status: Draft

Specification Lead: Red Hat, Inc.

Release: October 15, 2025

Copyright 2017,2023 Red Hat, Inc.
100 East Davie Street, Raleigh, NC 27601, U.S.A.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Organisation of this document

This document is organized in 4 parts:
* An introduction (this part), which is not part of the specification but introduces CDI concepts
and gives examples.
* Core CDI specification: Part I - Core CDI. This part has two subparts:
o CDI Lite specification: Part I.A - CDI Lite;
o CDI Full specification: Part I.B - CDI Full.

* Specific CDI features for Java SE: Part II - CDI in Java SE.

Major changes

http://www.apache.org/licenses/LICENSE-2.0

Jakarta Contexts and Dependency Injection 4.1

CDI 4.1 no longer specifies integration with Jakarta EE. This will now be specified in the Jakarta EE
Platform, Web Profile and Core Profile specifications.

The Unified EL integration API in BeanManager has been deprecated and the relevant methods added
to a dedicated interface ELAwareBeanManager, which is present in a new supplemental API artifact:
jakarta.enterprise:jakarta.enterprise.cdi-el-api. This supplemental artifact declares a JPMS
module jakarta.cdi.el, which declares a dependency on jakarta.cdi and jakarta.el.

The method invokers API has been added to allow frameworks to more easily call methods on
managed beans and optionally look up the bean instance and arguments using CDI.

New methods have been added to BeanContainer to check assignability of beans and events and to
obtain contexts for a scope.

The @Priority annotation can now be placed on producer methods and producer fields directly.

A new beans.xml 4.1 schema file has been added and the namespace of the beans_4_1.xsd schema
file is xmlns:jakartaee="https://jakarta.ee/xml/ns/jakartaee". The only change in the schema is to
update the default value for the version to 4.1 and update the example to use the new version.

Jakarta Contexts and Dependency Injection 4.0

CDI 4.0 splits the CDI core into Lite and Full. Lite contains a subset of original features which are
designed to work in more restricted environments. CDI Full contains everything that is in Lite plus
all other features that were formerly in core CDI and are not in Lite.

A new beans.xml 4.0 schema file has been added and the namespace of the beans_4_0.xsd schema
file is xmlns:jakartaee="https://jakarta.ee/xml/ns/jakartaee”, the same as 3.0. The key changes in
the schema are to make the bean-discovery-mode attribute default to annotated and to use annotated
as the default when an empty beans.xml is seen in a deployment. When running in a CDI Lite
environment, only the bean-discovery-mode attribute is read from the beans.xml file. This means
that by default, only those types with Bean defining annotations will be considered. Deployment
relying on discovery of all types will either need to include a beans.xml with bean-discovery-
mode=all, or introduce bean defining annotations to beans in the deployment.

A new jakarta.enterprise:jakarta.enterprise.lang-model API artifact has been aded for the Build
Compatible (Reflection-Free) Java Language Model for CDI introduced by CDI Lite, and used in the
new jakarta.enterprise.inject.build.compatible.spi package of the main
jakarta.enterprise:jakarta.enterprise.cdi-api artifact. This new package is described in the Build
compatible extensions section.

Java Platform Module System(JPMS) module-info.class files have been added to the CDI API
artifacts. The cdi-api artifact defines a jakarta.cdi module with the following descriptor:

module jakarta.cdi {
exports jakarta.decorator;
exports jakarta.enterprise.context;
exports jakarta.enterprise.context.control;

https://jakarta.ee/specifications/cdi/4.1/
https://jakarta.ee/specifications/cdi/4.0/

exports jakarta.
.enterprise.
exports jakarta.
.enterprise.
exports jakarta.
exports jakarta.
exports jakarta.
exports jakarta.
exports jakarta.

exports jakarta

exports jakarta

requires transitive jakarta
requires transitive jakarta
requires transitive jakarta
requires transitive jakarta

requires static
// For javadoc

enterprise.
enterprise.

enterprise.
enterprise.
enterprise.
enterprise.
enterprise.

jakarta.el;

context.spi;

event;

inject;
inject.build.compatible.spi;
inject.literal;

inject.se;

inject.spi;
inject.spi.configurator;
util;

.annotation;
.interceptor;
.cdi.lang.model;
.inject;

requires static java.naming;
//T0D0: requires static jakarta.transation;

uses jakarta.enterprise.inject.se.SeContainerInitializer;
uses jakarta.enterprise.inject.spi.CDIProvider;
uses jakarta.enterprise.inject.build.compatible.spi.BuildServices;

The lang-model artifact defines a jakarta.cdi.lang.model module with the following descriptor:

module jakarta.cdi.lang.model {

exports jakarta.enterprise.lang.model;
exports jakarta.enterprise.lang.model.declarations;
exports jakarta.enterprise.lang.model.types;

Jakarta Contexts and Dependency Injection 3.0

CDI 3.0 is an incompatible update to Jakarta Contexts and Dependency Injection 2.0 (CDI 2.0).

CDI 3.0 includes a change in the base namespace used by the APIs from javax to jakarta. For
example, the BeanManager interface has moved from javax.enterprise.inject.spi.BeanManager to
jakarta.enterprise.inject.spi.BeanManager.

A new beans.xml 3.0 schema file was added and the namespace of the beans_3_0.xsd schema file has
xmlns:javaee="http://xmlns.jcp.org/xml/ns/javaee" to
xmlns:jakartaee="https://jakarta.ee/xml/ns/jakartaee".

changed from

https://jakarta.ee/specifications/cdi/3.0/
https://jakarta.ee/specifications/cdi/2.0/

Introduction

Chapter 1. Architecture

This specification defines a powerful set of complementary services that help to improve the
structure of application code.

» A well-defined lifecycle for stateful objects bound to lifecycle contexts, where the set of contexts
is extensible

* A sophisticated, typesafe dependency injection mechanism, including the ability to select
dependencies at either development or deployment time, without verbose configuration

» Support for Jakarta EE modularity and the Jakarta EE component architecture - the modular
structure of a Jakarta EE application is taken into account when resolving dependencies
between Jakarta EE components

 Integration with the Jakarta Unified Expression Language (EL), allowing any contextual object
to be used directly within a Jakarta Faces or JSP page

» The ability to decorate injected objects (only in CDI Full environment)
» The ability to associate interceptors to objects via typesafe interceptor bindings
* An event notification model

* A web conversation context in addition to the three standard web contexts defined by the
Jakarta Servlets specification (only in CDI Full environment)

* An SPI allowing portable extensions to integrate cleanly with the container

The services defined by this specification allow objects to be bound to lifecycle contexts, to be
injected, to be associated with interceptors and decorators, and to interact in a loosely coupled
fashion by firing and observing events. Various kinds of objects are injectable, including Jakarta
Enterprise Bean 3 session beans, and Jakarta EE resources. We refer to these objects in general
terms as beans and to instances of beans that belong to contexts as contextual instances. Contextual
instances may be injected into other objects by the dependency injection service.

To take advantage of these facilities, the developer provides additional bean-level metadata in the
form of Java annotations and application-level metadata in the form of an XML descriptor.

The use of these services significantly simplifies the task of creating Jakarta EE applications by
integrating the Jakarta EE web tier with Jakarta EE enterprise services. In particular, Jakarta
Enterprise Bean components may be used as Jakarta Faces managed beans, thus integrating the
programming models of Jakarta Enterprise Bean and Jakarta Faces.

It’s even possible to integrate with third-party frameworks. A portable extension may provide
objects to be injected or obtain contextual instances using the dependency injection service. The
framework may even raise and observe events using the event notification service.

An application that takes advantage of these services may be designed to execute in the Jakarta EE
environment, the Java SE environment, or in other environments that implement CDI Lite. If the
application uses Jakarta EE services such as transaction management and persistence in the Java SE
environment, the services are usually restricted to, at most, the subset defined for embedded usage
by the Jakarta Enterprise Bean specification.

1.1. Contracts

This specification defines the responsibilities of:

* the application developer who uses these services, and

* the vendor who implements the functionality defined by this specification and provides a
runtime environment in which the application executes.

This runtime environment is called the container. For example, the container might be a Jakarta EE
container or an embeddable Jakarta Enterprise Bean container.

Concepts, Programming model, Inheritance, Interceptor bindings and Observer methods define the
programming model for application components that take advantage of the services defined by this
specification, the responsibilities of the component developer, and the annotations used by the
component developer to specify metadata. CDI Full adds Specialization and Decorator beans.

Dependency injection and lookup, Scopes and contexts, Lifecycle of contextual instances, Events
and Interceptor resolution define the semantics and behavior of the services, the responsibilities of
the container implementation and the APIs used by the application to interact directly with the
container. CDI Full adds Decorators.

Packaging and deployment and Packaging and deployment in CDI Full defines how applications
that use the services defined by this specification must be packaged into bean archives, and the
responsibilities of the container implementation at application initialization time.

Build compatible extensions, Portable extensions, The Contextual interface and The Context
interface define an SPI that allows portable extensions to integrate with the container.

1.2. Relationship to other specifications

An application developer creates container-managed components such as Jakarta Enterprise Beans
or servlets and then provides additional metadata that declares additional behavior defined by this
specification. These components may take advantage of the services defined by this specification,
together with the enterprise and presentational aspects defined by other Jakarta EE platform
technologies.

In addition, this specification defines an SPI that allows alternative, non-platform technologies to
integrate with the container and the Jakarta EE environment, for example, alternative web
presentation technologies.

1.2.1. Relationship to the Jakarta EE platform specification

In the Jakarta EE environment, all component classes supporting injection, as defined by the Jakarta
EE platform specification, may inject beans via the dependency injection service.

The Jakarta EE platform specification defines a facility for injecting resources that exist in the
Jakarta EE component environment. Resources are identified by string-based names. This
specification bolsters that functionality, adding the ability to inject an open-ended set of object
types, including, but not limited to, component environment resources, based upon typesafe

qualifiers.

1.2.2. Relationship to Jakarta Enterprise Bean

Jakarta Enterprise Bean defines a programming model for application components that access
transactional resources in a multi-user environment. Jakarta Enterprise Bean allows concerns such
as role-based security, transaction demarcation, concurrency and scalability to be specified
declaratively using annotations and XML deployment descriptors and enforced by the Jakarta
Enterprise Bean container at runtime.

Jakarta Enterprise Bean components may be stateful, but are not by nature contextual. References
to stateful component instances must be explicitly passed between clients and stateful instances
must be explicitly destroyed by the application.

This specification enhances the Jakarta Enterprise Bean component model with contextual lifecycle
management.

Any session bean instance obtained via the dependency injection service is a contextual instance. It
is bound to a lifecycle context and is available to other objects that execute in that context. The
container automatically creates the instance when it is needed by a client. When the context ends,
the container automatically destroys the instance.

Message-driven and entity beans are by nature non-contextual objects and may not be injected into
other objects.

The container performs dependency injection on all session and message-driven bean instances,
even those which are not contextual instances.

1.2.3. Relationship to Jakarta Dependency Injection

The Jakarta Dependency Injection specification defines a set of annotations for the declaring
injected fields, methods and constructors of a bean. The dependency injection service makes use of
these annotations.

1.2.4. Relationship to Jakarta Interceptors

The Jakarta Interceptors specification defines the basic programming model and semantics for
interceptors. This specification enhances that model by providing the ability to associate
interceptors with beans using typesafe interceptor bindings.

1.2.5. Relationship to Jakarta Faces

Jakarta Faces is a web-tier presentation framework that provides a component model for graphical
user interface components and an event-driven interaction model that binds user interface
components to objects accessible via Unified EL.

This specification allows any bean to be assigned a name. Thus, a Jakarta Faces application may
take advantage of the sophisticated context and dependency injection model defined by this
specification.

1.2.6. Relationship to Jakarta Validation

Jakarta Validation provides a unified way of declaring and defining constraints on an object model,
defines a runtime engine to validate objects and provides method validation.

The Jakarta Validation specification defines beans for certain managed objects, including Validator
and ValidatorFactory. A number of Jakarta Validation managed instances, including
ConstraintValidators, can take advantage of dependency injection. Jakarta Validation also provides
support for method parameter validation on any bean.

1.3. Introductory examples

The following examples demonstrate the use of lifecycle contexts and dependency injection.

1.3.1. Jakarta Faces example

The following Jakarta Faces page defines a login prompt for a web application:

<fiview>
<h:form>
<h:panelGrid columns="2" rendered="#{!1login.loggedIn}">
<h:outputlLabel for="username">Username:</h:outputlLabel>
<h:inputText id="username" value="#{credentials.username}"/>
<h:outputlLabel for="password">Password:</h:outputlLabel>
<h:inputText id="password" value="#{credentials.password}"/>
</h:panelGrid>
<h:commandButton value="Login" action="#{login.login}" rendered=
“#{!1ogin.loggedIn}"/>
<h:commandButton value="Logout" action="#{login.logout}" rendered=
"#{login.loggedIn}"/>
</h:form>
</f:view>

The Jakarta EL expressions in this page refer to beans named credentials and login.

The Credentials bean has a lifecycle that is bound to the Jakarta Faces request:

@Model
public class Credentials {

private String username;
private String password;

public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }

public String getPassword() { return password; }
public void setPassword(String password) { this.password

password; }

The @Model annotation defined in Built-in stereotypes is a stereotype that identifies the Credentials
bean as a model object in an MVC architecture.

The Login bean has a lifecycle that is bound to the HTTP session:

public class Login implements Serializable {

Credentials credentials;
EntityManager userDatabase;

private CriteriaQuery<User> query;
private Parameter<String> usernameParam;
private Parameter<String> passwordParam;

private User user;

void initQuery(EntityManagerFactory emf) {
CriteriaBuilder cb = emf.getCriteriaBuilder();
usernameParam = cb.parameter(String.class);
passwordParam = cb.parameter(String.class);
query = cb.createQuery(User.class);
Root<User> u = query.from(User.class);
query.select(u);
query.where(cb.equal(u.get(User_.username), usernameParam),
cb.equal(u.get(User_.password), passwordParam));

}
public void login() {

List<User> results = userDatabase.createQuery(query)
.setParameter(usernameParam, credentials.getUsername())
.setParameter(passwordParam, credentials.getPassword())
.getResultList();

if (!results.isEmpty()) {
user = results.get(0);

}
}

public void logout() {
user = null;

}

public boolean isLoggedIn() {

return user!=null;

}
User getCurrentUser() {
if (user==null) {
throw new NotLoggedInException();
}
else {
return user;
}
}

The @SessionScoped annotation defined in Built-in scope types is a scope type that specifies the
lifecycle of instances of Login. Managed beans with this scope must be serializable.

The @Inject annotation defined by the Jakarta Dependency Injection specification identifies an
injected field which is initialized by the container when the bean is instantiated, or an initializer
method which is called by the container after the bean is instantiated, with injected parameters.

The @Users annotation is a qualifier type defined by the application:

(RUNTIME)
({METHOD, FIELD, PARAMETER, TYPE})
public Users {}

The @LoggedIn annotation is another qualifier type defined by the application:

(RUNTIME)
({METHOD, FIELD, PARAMETER, TYPE})
public LoggedIn {}

The @Produces annotation defined in Declaring a producer method identifies the method
getCurrentUser() as a producer method, which will be called whenever another bean in the system
needs the currently logged-in user, for example, whenever the user attribute of the DocumentEditor
class is injected by the container:

public class DocumentEditor {
Document document;

User currentUser;
EntityManager docDatabase;

10

public void save() {
document.setCreatedBy(currentUser);
em.persist(document);

The @Documents annotation is another application-defined qualifier type. The use of distinct qualifier
types enables the container to distinguish which Jakarta Persistence persistence unit is required.

When the login form is submitted, Jakarta Faces assigns the entered username and password to an
instance of the Credentials bean that is automatically instantiated by the container. Next, Jakarta
Faces calls the login() method of an instance of Login that is automatically instantiated by the
container. This instance continues to exist for and be available to other requests in the same HTTP
session, and provides the User object representing the current user to any other bean that requires
it (for example, DocumentEditor). If the producer method is called before the login() method
initializes the user object, it throws a NotLoggedInException.

1.3.2. Jakarta Enterprise Bean example

Alternatively, we could write our Login bean to take advantage of the functionality defined by
Jakarta Enterprise Bean:

public class Login {

Credentials credentials;
EntityManager userDatabase;

private User user;

void initQuery(EntityManagerFactory emf) {

}
(REQUIRES_NEW)

("guest")
public void login() {

}

public void logout() {
user = null;

}

public boolean isLoggedIn() {

11

return user!=null;

("user")
User getCurrentUser() {

The Jakarta Enterprise Bean @Stateful annotation specifies that this bean is an Jakarta Enterprise
Bean stateful session bean. The Jakarta Enterprise Bean @TransactionAttribute and @RolesAllowed
annotations declare the Jakarta Enterprise Bean transaction demarcation and security attributes of
the annotated methods.

1.3.3. Jakarta EE component environment example

In the previous examples, we injected container-managed persistence contexts using qualifier
types. We need to tell the container what persistence context is being referred to by which qualifier
type. We can declare references to persistence contexts and other resources in the Jakarta EE
component environment in Java code.

public class Databases {

(unitName="UserData")
EntityManager userDatabaseEntityManager;

(unitName="UserData")
EntityManagerFactory userDatabaseEntityManagerFactory;

(unitName="DocumentData")
EntityManager docDatabaseEntityManager;

The Jakarta Persistence @PersistenceContext and @PersistenceUnit annotations identify the Jakarta
Persistence persistence unit.

1.3.4. Event example

Beans may raise events. For example, our Login class could raise events when a user logs in or out.

public class Login implements Serializable {

Credentials credentials;
EntityManager userDatabase;

12

Event<User> userlLoggedInEvent;
Event<User> userlLoggedOutEvent;

private User user;

void initQuery(EntityManagerFactory emf) {

}
public void login() {
List<User> results = ... ;

if (!results.isEmpty()) {
user = results.get(0);
userLoggedInEvent.fire(user);

}

public void logout() {
userLoggedOutEvent.fire(user);
user = null;

}

public boolean isLoggedIn() {
return user!=null;

}

User getCurrentUser() {

The method fire() of the built-in bean of type Event defined in The Event interface allows the
application to fire events. Events consist of an event object - in this case the User - and event
qualifiers. Event qualifier - such as @LoggedIn and @LoggedOut - allow event consumers to specify
which events of a certain type they are interested in.

Other beans may observe these events and use them to synchronize their internal state, with no
coupling to the bean producing the events:

public class Permissions implements Serializable {

13

private Set<Permission> permissions = new HashSet<Permission>();

EntityManager userDatabase;
Parameter<String> usernameParam;
CriteriaQuery<Permission> query;

void initQuery(EntityManagerFactory emf) {
CriteriaBuilder cb = emf.getCriteriaBuilder();
usernameParam = cb.parameter(String.class);
query = cb.createQuery(Permission.class);
Root<Permission> p = query.from(Permission.class);
query.select(p);
query.where(cb.equal(p.get(Permission_.user).get(User_.username),
usernameParam));

}
void onLogin(User user) {
permissions = new HashSet<Permission>(userDatabase.createQuery(query)
.setParameter (usernameParam, user.getUsername())
.getResultList());
}
void onLogout(User user {
permissions.clear();
}

The @Produces annotation applied to a field identifies the field as a producer field, as defined in
Producer fields, a kind of shortcut version of a producer method. This producer field allows the
permissions of the current user to be injected to an injection point of type Set<Permission>.

The @0bserves annotation defined in Declaring an observer method identifies the method with the
annotated parameter as an observer method that is called by the container whenever an event
matching the type and qualifiers of the annotated parameter is fired.

1.3.5. Injection point metadata example
It is possible to implement generic beans that introspect the injection point to which they belong.

This makes it possible to implement injection for Logger s, for example.

class Loggers {

Logger getlogger(InjectionPoint injectionPoint) {
return Logger.getlLogger(injectionPoint.getMember().getDeclaringClass()
.getSimpleName());
}

14

The InjectionPoint interface defined in Injection point metadata, provides metadata about the
injection point to the object being injected into it.

Then this class will have a Logger named "Permissions"” injected:

public class Permissions implements Serializable {

Logger log;

1.3.6. Interceptor example

Interceptors allow common, cross-cutting concerns to be applied to beans via custom annotations.
Interceptor types may be individually enabled or disabled at deployment time.

The AuthorizationInterceptor class defines a custom authorization check:

public class AuthorizationInterceptor {

User user;
Logger log;

public Object authorize(InvocationContext ic) throws Exception {
try {
if (luser.isBanned()) {
log.fine("Authorized");
return ic.proceed();

+
else {

log.fine("Not authorized");

throw new NotAuthorizedException();
}

}
catch (NotAuthenticatedException nae) {

log.fine("Not authenticated");
throw nae;

15

The @Interceptor annotation, defined in Declaring the interceptor bindings of an interceptor,
identifies the AuthorizationInterceptor class as an interceptor. The @Secure annotation is a custom
interceptor binding type, as defined in Interceptor binding types.

({TYPE, METHOD})
(RUNTIME)
public Secure {}

The @Secure annotation is used to apply the interceptor to a bean:

public class DocumentEditor {

Document document;
User user;
EntityManager em;

public void save() {
document.setCreatedBy(currentUser);
em.persist(document);

When the save() method is invoked, the authorize() method of the interceptor will be called. The
invocation will proceed to the DocumentEditor class only if the authorization check is successful.

1.3.7. Decorator example

NOTE Decorators are only available in CDI Full.

Decorators are similar to interceptors, but apply only to beans of a particular Java interface. Like
interceptors, decorators may be easily enabled or disabled at deployment time. Unlike interceptors,
decorators are aware of the semantics of the intercepted method.

For example, the DataAccess interface might be implemented by many beans:

public interface DataAccess<T, V> {
public V getId(T object);

public T load(V id);
public void save(T object);

16

public void delete(T object);

public Class<T> getDataType();

The DataAccessAuthorizationDecorator class defines the authorization checks:

public abstract class DataAccessAuthorizationDecorator<T, V> implements DataAccess<T,
V> {

DataAccess<T, V> delegate;

Logger log;
Set<Permission> permissions;

public void save(T object) {
authorize(SecureAction.SAVE, object);
delegate.save(object);

}

public void delete(T object) {
authorize(SecureAction.DELETE, object);
delegate.delete(object);

}

private void authorize(SecureAction action, T object) {
V id = delegate.getId(object);
(lass<T> type = delegate.getDataType();
if (permissions.contains(new Permission(action, type, id))) {

log.fine("Authorized for " + action);
}
else {
log.fine("Not authorized for " + action);
throw new NotAuthorizedException(action);
}

The @Decorator annotation defined in Declaring a decorator identifies the
DataAccessAuthorizationDecorator class as a decorator. The @Delegate annotation defined in
Decorator delegate injection points identifies the delegate, which the decorator uses to delegate
method calls to the container. The decorator applies to any bean that implements DataAccess.

The decorator intercepts invocations just like an interceptor. However, unlike an interceptor, the
decorator contains functionality that is specific to the semantics of the method being called.

17

Decorators may be declared abstract, relieving the developer of the responsibility of implementing
all methods of the decorated interface. If a decorator does not implement a method of a decorated
interface, the decorator will simply not be called when that method is invoked upon the decorated
bean.

18

PartlI - Core CDI

19

Structure

The Core CDI specification has two subparts:

* CDI Lite specification which contains a subset of CDI features and which can be implemented in
more restricted environments; this is part of the Jakarta EE Core Profile;

* CDI Full specification that builds on top of Lite and adds all advanced CDI features; this is the
classic CDI platform that is part of the Jakarta EE Web Profile and Jakarta EE Platform.

20

Part I.A - CDI Lite

21

Chapter 2. Concepts

A bean is a source of contextual objects which define application state and/or logic. These objects
are called contextual instances of the bean. The container creates and destroys these instances and
associates them with the appropriate context. Contextual instances of a bean may be injected into
other objects (including other bean instances) that execute in the same context. A bean may bear
metadata defining its lifecycle and interactions with other beans.

A bean comprises the following attributes:

* A (nonempty) set of bean types
* A (nonempty) set of qualifiers

* Ascope

Optionally, a bean name
* A set of interceptor bindings

* A bean implementation
Furthermore, a bean may be an alternative or a reserve.

A bean developer provides the bean implementation by writing business logic in Java code. The
developer then defines the remaining attributes by explicitly annotating the bean class, or by
allowing them to be defaulted by the container, as specified in Programming model.

The bean types and qualifiers of a bean determine where its instances will be injected by the
container, as defined in Dependency injection and lookup.

The bean developer may also create interceptors or reuse existing interceptors. The interceptor
bindings of a bean determine which interceptors will be applied at runtime. Interceptors are
defined by Jakarta EE interceptors specification, and interceptor bindings are specified in
Interceptor bindings.

In CDI Full environment, the bean developer may also create decorators or reuse existing
decorators. The bean types and qualifiers of a bean determine which decorators will be applied at
runtime. Decorators are defined in Decorators.

2.1. Functionality provided by the container to the
bean

A bean is provided by the container with the following capabilities:
* transparent creation and destruction and scoping to a particular context, specified in Scopes
and contexts and Lifecycle of contextual instances,

* scoped resolution by bean type and qualifier annotation type when injected into a Java-based
client, as defined by Typesafe resolution,

» lifecycle callbacks and automatic injection of other bean instances, specified in Programming

22

model and Dependency injection and lookup,
* method interception, callback interception, as defined in Interceptor bindings, and

* event notification, as defined in Events.
In CDI Full environment, the container also provides the following capabilities:

» decoration, as defined in Decorators.

2.2. Bean types

A bean type defines a client-visible type of the bean. A bean may have multiple bean types. For
example, the following bean has four bean types:

public class BookShop
extends Business
implements Shop<Book> {

The bean types are BookShop, Business, Shop<Book> and Object.

The rules for determining the (unrestricted) set of bean types for a bean are defined in Bean types
of a managed bean, Bean types of a producer method and Bean types of a producer field.

All beans have the bean type java.lang.0Object.

The bean types of a bean are used by the rules of typesafe resolution defined in Typesafe
resolution.

2.2.1. Legal bean types
Almost any Java type may be a bean type of a bean:
* A bean type may be an interface, a concrete class or an abstract class, may be declared sealed or
non-sealed or final, and may have final methods.

* A bean type may be a parameterized type with actual type parameters and type variables.

* A bean type may be an array type. Two array types are considered identical only if the element
type is identical.

* A bean type may be a primitive type. Primitive types are considered to be identical to their
corresponding wrapper types in java.lang.

* A bean type may be a raw type.
However, some Java types are not legal bean types :

» A type variable is not a legal bean type.

* A parameterized type that contains a wildcard type parameter is not a legal bean type.

23

* An array type whose component type is not a legal bean type.

Note that certain additional restrictions are specified in Unproxyable bean types for beans with a
normal scope, as defined in Normal scopes and pseudo-scopes.

2.2.2. Restricting the bean types of a bean

The bean types of a bean may be restricted by annotating the bean class or producer method or
field with the annotation @jakarta.enterprise.inject.Typed.

(Shop.class)
public class BookShop
extends Business
implements Shop<Book> {

When a @Typed annotation is explicitly specified, only the types whose classes are explicitly listed
using the value member, together with java.lang.0Object, are bean types of the bean.

In the example, the bean has a two bean types: Shop<Book> and Object.

If a bean class or producer method or field specifies a @Typed annotation, and the value member
specifies a class which does not correspond to a type in the unrestricted set of bean types of a bean,
the container automatically detects the problem and treats it as a definition error.

2.2.3. Typecasting between bean types

A client of a bean may typecast its contextual reference to a bean to any bean type of the bean
which is a Java interface. However, the client may not in general typecast its contextual reference
to an arbitrary concrete bean type of the bean. For example, if our managed bean was injected to
the following field:

Business biz;
Then the following typecast is legal:
Shop<Book> bookShop = (Shop<Book>) biz;
However, the following typecast is not legal and might result in an exception at runtime:

BookShop bookShop = (BookShop) biz;

24

2.3. Qualifiers

For a given bean type, there may be multiple beans which implement the type. For example, an
application may have two implementations of the interface PaymentProcessor:

class SynchronousPaymentProcessor
implements PaymentProcessor {

class AsynchronousPaymentProcessor
implements PaymentProcessor {

A client that needs a PaymentProcessor that processes payments synchronously needs some way to
distinguish between the two different implementations. One approach would be for the client to
explicitly specify the class that implements the PaymentProcessor interface. However, this approach
creates a hard dependence between client and implementation - exactly what use of the interface
was designed to avoid!

A qualifier type represents some client-visible semantic associated with a type that is satisfied by
some implementations of the type (and not by others). For example, we could introduce qualifier
types representing synchronicity and asynchronicity. In Java code, qualifier types are represented
by annotations.

class SynchronousPaymentProcessor
implements PaymentProcessor {

class AsynchronousPaymentProcessor
implements PaymentProcessor {

Finally, qualifier types are applied to injection points to distinguish which implementation is
required by the client. For example, when the container encounters the following injected field, an
instance of SynchronousPaymentProcessor will be injected:

PaymentProcessor paymentProcessor;

25

But in this case, an instance of AsynchronousPaymentProcessor will be injected:
PaymentProcessor paymentProcessor;

The container inspects the qualifier annotations and type of the injected attribute to determine the
bean instance to be injected, according to the rules of typesafe resolution defined in Typesafe
resolution.

An injection point may even specify multiple qualifiers.
Qualifier types are also used as event selectors by event consumers, as defined in Events.

In CDI Full environment, qualifier types are also used to bind decorators to beans, as specified in
Decorators.

2.3.1. Built-in qualifier types

Three standard qualifier types are defined in the package jakarta.enterprise.inject. In addition,
the built-in qualifier type @Named is defined by the package jakarta.inject.

Every bean has the built-in qualifier @Any, even if it does not explicitly declare this qualifier.

If a bean does not explicitly declare a qualifier other than @Named or @Any, the bean has exactly one
additional qualifier, of type @Default. This is called the default qualifier.

The following declarations are equivalent:

public class Order { ... }

public class Order { ... }

Both declarations result in a bean with two qualifiers: @Any and @Default.

The following declaration results in a bean with three qualifiers: @Any, @Default and @Named("ord").

(Ilordll)
public class Order { ... }

The default qualifier is also assumed for any injection point that does not explicitly declare a
qualifier, as defined in The default qualifier at injection points. The following declarations, in
which the use of the @Inject annotation identifies the constructor parameter as an injection point,
are equivalent:

public class Order {

26

public Order(OrderProcessor processor) { ... }

public class Order {

public Order(OrderProcessor processor) { ... }

2.3.2. Defining new qualifier types

A qualifier type is a Java annotation defined as @Retention(RUNTIME). Typically a qualifier type is
defined as @Target({METHOD, FIELD, PARAMETER, TYPE}).

A qualifier type may be declared by specifying the @jakarta.inject.Qualifier meta-annotation.

(RUNTIME)
({METHOD, FIELD, PARAMETER, TYPE})
public Synchronous {}

(RUNTIME)
({METHOD, FIELD, PARAMETER, TYPE})
public Asynchronous {}

A qualifier type may define annotation members.

(RUNTIME)
({METHOD, FIELD, PARAMETER, TYPE})
public PayBy {
PaymentMethod value();
¥

2.3.3. Declaring the qualifiers of a bean

The qualifiers of a bean are declared by annotating the bean class or producer method or field with
the qualifier types.

class LdapAuthenticator
implements Authenticator {

27

public class Shop {

public List<Product> getAllProducts() { ... }

public List<Product> getWishList() { ... }

Any bean may declare multiple qualifier types.

class SynchronousReliablePaymentProcessor
implements PaymentProcessor {

2.3.4. Specifying qualifiers of an injected field

Qualifier types may be applied to injected fields (see Injected fields) to determine the bean that is
injected, according to the rules of typesafe resolution defined in Typesafe resolution.

Authenticator authenticator;
A bean may only be injected to an injection point if it has all the qualifiers of the injection point.

PaymentProcessor paymentProcessor;

List<Product> catalog;

List<Product> wishList;

2.3.5. Specifying qualifiers of a method or constructor parameter

Qualifier types may be applied to parameters of producer methods, initializer methods, disposer
methods, observer methods or bean constructors (see Programming model) to determine the bean
instance that is passed when the method is called by the container. The container uses the rules of
typesafe resolution defined in Typesafe resolution to determine values for these parameters.

For example, when the container encounters the following producer method, an instance of
SynchronousPaymentProcessor will be passed to the first parameter and an instance of
AsynchronousPaymentProcessor will be passed to the second parameter:

28

PaymentProcessor getPaymentProcessor(PaymentProcessor sync,
PaymentProcessor async) {
return isSynchronous() ? sync : async;

2.3.6. Repeating qualifiers

In some cases, it may be useful to have a repeated qualifier for your type safe resolution. A
repeated qualifier behaves just as any other qualifier does. For example, the below qualifier is a
repeatable qualifier

({ PARAMETER, FIELD, METHOD, TYPE })
(RUNTIME)

(Locations.class)
public Location {
String value();

}
({ PARAMETER, FIELD, METHOD, TYPE })
(RUNTIME)
public Locations {
Location[] value();
+

Now you can define appropriate producers and injection points for repeated qualifiers.

("north")
("south")
public Coordinate createCoordinate() {
/] ...
¥
("north")
("south")

private Coordinate coordinate;

A partial match injection point will still work in this case (from the same producer method)

("south")
private Coordinate coordinate;

29

However, adding the follow producer method will continue to give you an ambiguous resolution
error (assuming the other producer exists as well)

("south")
public Coordinate createSouthCoordinate() {
/] ...

}

2.4. Scopes

Scoped objects, exist in a well-defined lifecycle context:

* they may be automatically created when needed and then automatically destroyed when the
context in which they were created ends, and

* their state is automatically shared by clients that execute in the same context.

All beans have a scope. The scope of a bean determines the lifecycle of its instances, and which
instances of the bean are visible to instances of other beans, as defined in Scopes and contexts. A
scope type is represented by an annotation type.

For example, an object that represents the current user is represented by a session scoped object:
User getCurrentUser() { ... }

An object that represents an order is represented by a conversation scoped object:

public class Order { ... }

NOTE Session scope and conversation scope are only available in CDI Full.

A list that contains the results of a search screen might be represented by a request scoped object:

("orders")
List<Order> getOrderSearchResults() { ... }

The set of scope types is extensible.

2.4.1. Built-in scope types

There are three standard scope types defined in CDI Lite, all defined in the package
jakarta.enterprise.context.

30

* The container must provide an implementation of the @RequestScoped and @ApplicationScoped
annotations defined in Context management for built-in scopes. Note that these standard scopes
can be extended by third-party extensions as defined in The Context interface

* Finally, there is a @Dependent pseudo-scope for dependent objects, as defined in Dependent
pseudo-scope.

If an interceptor has any scope other than @Dependent, non-portable behavior results.

2.4.2. Defining new scope types

A scope type is a Java annotation defined as @Retention(RUNTIME). Typically a scope type is defined
as @Target({TYPE, METHOD, FIELD}). All scope types must also specify the @jakarta.inject.Scope or
@jakarta.enterprise.context.NormalScope meta-annotation.

A scope type must not have any attributes. If a scope type has attributes, non-portable behavior
results.

For example, the following annotation declares a "business process scope":

({TYPE, METHOD, FIELD})
(RUNTIME)
public BusinessProcessScoped {}

Custom scopes are normally defined by extensions, which must also provide an implementation of
the Context interface, as defined in The Context interface, that implements the custom scope.
Portable extensions provide a context object directly, while build compatible extensions provide a
class that the container has to instantiate to obtain the context object.

2.4.3. Declaring the bean scope

The scope of a bean is defined by annotating the bean class or producer method or field with a
scope type.

A bean class or producer method or field may specify at most one scope type annotation. If a bean
class or producer method or field specifies multiple scope type annotations, the container
automatically detects the problem and treats it as a definition error.

public class Shop {

public List<Product> getAllProducts() { ... }

public List<Product> getWishList() { }

31

Likewise, a bean with the custom business process scope may be declared by annotating it with the
@BusinessProcessScoped annotation:

public class Order { ... }

Alternatively, a scope type may be specified using a stereotype annotation, as defined in Declaring
the stereotypes for a bean.

2.4.4. Default scope

When no scope is explicitly declared by annotating the bean class or producer method or field the
scope of a bean is defaulted.

The default scope for a bean which does not explicitly declare a scope depends upon its declared
stereotypes:

« If the bean does not declare any stereotype with a declared default scope, the default scope for
the bean is @Dependent.

o If all stereotypes declared by the bean that have some declared default scope have the same
default scope, then that scope is the default scope for the bean.

* If there are two different stereotypes present on the bean, directly, indirectly, or transitively,
that declare different default scopes, then there is no default scope and the bean must explicitly
declare a scope. If it does not explicitly declare a scope, the container automatically detects the
problem and treats it as a definition error.

If a bean explicitly declares a scope, any default scopes declared by stereotypes are ignored.

2.5. Default bean discovery mode

The default bean discovery mode for a bean archive is annotated, and such a bean archive is said to
be an implicit bean archive as defined in Bean archives.

If the bean discovery mode is annotated then:
* bean classes that don’t have bean defining annotation (as defined in Bean defining annotations)

are not discovered, and

* producer methods (as defined in Producer methods) whose bean class does not have a bean
defining annotation are not discovered, and

* producer fields (as defined in Producer fields) whose bean class does not have a bean defining
annotation are not discovered, and

* disposer methods (as defined in Disposer methods) whose bean class does not have a bean
defining annotation are not discovered, and

32

» observer methods (as defined in Declaring an observer method) whose bean class does not have
a bean defining annotation are not discovered.

2.5.1. Bean defining annotations

A bean class may have a bean defining annotation, allowing it to be placed anywhere in an
application, as defined in Bean archives. A bean class with a bean defining annotation is said to be
an implicit bean.

The set of bean defining annotations contains:

@ApplicationScoped and @RequestScoped annotations,

all other normal scope types,
e @Interceptor annotation,

+ all stereotype annotations (i.e. annotations annotated with @Stereotype),

and the @Dependent scope annotation.

If one of these annotations is declared on a bean class, then the bean class is said to have a bean
defining annotation. For example, this dependent scoped bean has a bean defining annotation:

public class BookShop
extends Business
implements Shop<Book> {

whilst this dependent scoped bean does not have a bean defining annotation:

public class CoffeeShop
extends Business
implements Shop<Coffee> {

Note that to ensure compatibility with other Jakarta Dependency Injection implementations, all
pseudo-scope annotations except @Dependent are not bean defining annotations. However, a
stereotype annotation including a pseudo-scope annotation is a bean defining annotation.

2.6. Bean names

A bean may have a bean name. A bean with a name may be referred to by its name when used in a
non typesafe environment (like the Unified Expression Language). A valid bean name is a period-
separated list of valid EL identifiers.

The following strings are valid bean names:

33

com.acme.settings

orderManager

Subject to the restrictions defined in Ambiguous names, multiple beans may share the same bean
name.

Bean names are used by the rules of bean name resolution defined in Name resolution.

2.6.1. Declaring the bean name
To specify the name of a bean, the qualifier @jakarta.inject.Named is applied to the bean class or

producer method or field. This bean is named currentOrder:

("currentOrder")
public class Order { ... }

2.6.2. Default bean names
In the following circumstances, a default name must be assigned by the container:

* A bean class or producer method or field of a bean declares a @Named annotation and no bean
name is explicitly specified by the value member.

* A bean declares a stereotype that declares an empty @Named annotation, and the bean does not
explicitly specify a bean name.

The default name for a bean depends upon the kind of the bean. The rules for determining the
default name for a bean are defined in Default bean name for a managed bean, Default bean name
for a producer method and Default bean name for a producer field.

2.6.3. Beans with no name
If @Named is not declared by the bean, nor by its stereotypes, a bean has no name.

If an interceptor has a name, non-portable behavior results.

2.7. Alternatives

An alternative is a bean that must be explicitly selected if it should be available for lookup, injection
or name resolution.

During Typesafe resolution, alternatives take precedence over other, non-alternative beans.

34

2.7.1. Declaring an alternative

An alternative may be declared by annotating the bean class or producer method or field with the
@Alternative annotation.

public class MockOrder extends Order { ... }

Alternatively, an alternative may be declared by annotating a bean, producer method or producer
field with a stereotype that declares an @Alternative annotation.

If an alternative managed bean declares a reserve producer, the container automatically detects
the problem and treats it as a definition error.

If an interceptor is an alternative, non-portable behavior results.

2.8. Reserves

A reserve is a bean that must be explicitly selected if it should be available for lookup, injection or
name resolution.

During Typesafe resolution, other, non-reserve beans take precedence over reserves.

2.8.1. Declaring a reserve

A reserve may be declared by annotating the bean class or producer method or field with the
@Reserve annotation.

public class DefaultOrder extends Order { ... }

Alternatively, a reserve may be declared by annotating a bean, producer method or producer field
with a stereotype that declares a @Reserve annotation.

If a reserve is also an alternative, the container automatically detects the problem and treats it as a
definition error.

If a reserve managed bean declares an alternative producer, the container automatically detects
the problem and treats it as a definition error.

If an interceptor is a reserve, non-portable behavior results.

2.9. Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows a framework developer to identify such a role and declare some common metadata for
beans with that role in a central place.

35

A stereotype encapsulates any combination of:

* a default scope, and

* a set of interceptor bindings.
A stereotype may also specify that:

+ all beans with the stereotype have defaulted bean names, or that
+ all beans with the stereotype are alternatives, or that
* all beans with the stereotype have predefined @Priority, or that

* all beans with the stereotype are reserves.

A bean may declare zero, one or multiple stereotypes.

2.9.1. Defining new stereotypes

A bean stereotype is a Java annotation defined as @Retention(RUNTIME). Typically a bean stereotype
is defined as @Target({TYPE, METHOD, FIELD}), @Target(TYPE), @Target(METHOD), @Target(FIELD) or
@Target({METHOD, FIELD}).

A stereotype may be declared by specifying the @jakarta.enterprise.inject.Stereotype meta-
annotation.

(TYPE)
(RUNTIME)
public Action {}

2.9.1.1. Declaring the default scope for a stereotype

The default scope of a stereotype is defined by annotating the stereotype with a scope type. A
stereotype may declare at most one scope. If a stereotype declares more than one scope, the
container automatically detects the problem and treats it as a definition error.

For example, the following stereotype might be used to identify action classes in a web application:

(TYPE)
(RUNTIME)
public Action {}

Then actions would have scope @RequestScoped unless the scope is explicitly specified by the bean.

2.9.1.2. Specifying interceptor bindings for a stereotype

The interceptor bindings of a stereotype are defined by annotating the stereotype with the

36

interceptor binding types. A stereotype may declare zero, one or multiple interceptor bindings, as
defined in Interceptor bindings for stereotypes.

We may specify interceptor bindings that apply to all actions:

(TYPE)
(RUNTIME)
public Action {}

2.9.1.3. Declaring a @Named stereotype

A stereotype may declare an empty @Named annotation, which specifies that every bean with the
stereotype has a defaulted name when a name is not explicitly specified by the bean. A @Named
qualifier declared by a stereotype is not added to the qualifiers of a bean with the stereotype.

If a stereotype declares a non-empty @Named annotation, the container automatically detects the
problem and treats it as a definition error.

We may specify that all actions have bean names:

(TYPE)
(RUNTIME)
public Action {}

A stereotype should not declare any qualifier annotation other than @Named. If a stereotype declares
any other qualifier annotation, non-portable behavior results.

A stereotype should not be annotated @Typed. If a stereotype is annotated @Typed, non-portable
behavior results.

2.9.1.4. Declaring an @Alternative stereotype

A stereotype may declare an @Alternative annotation, which specifies that every bean with the
stereotype is an alternative.

We may specify that all mock objects are alternatives:

37

(TYPE)
(RUNTIME)
public Mock {}

2.9.1.5. Declaring stereotype with @Priority

A stereotype may declare a @Priority annotation which functions as a means of enabling and
ordering affected beans.

If there are two different stereotypes present on a bean, directly, indirectly, or transitively, that
declare different priority values, then the bean must explicitly declare a @Priority annotation. If the
bean does not explicitly declare priority, the container automatically detects the problem and treats
it as a definition error.

If a bean explicitly declares priority, any priority values declared by stereotypes are ignored.

Following sample shows a stereotype that can be used to mark bean as globally enabled alternative:

(Interceptor.Priority.APPLICATION + 5)

(TYPE)
(RUNTIME)
public Mock {}

2.9.1.6. Declaring a @Reserve stereotype

A stereotype may declare a @Reserve annotation, which specifies that every bean with the
stereotype is a reserve.

We may specify that all beans annotated with @DefaultImpl are reserves:

(Interceptor.Priority.APPLICATION)
(TYPE)

(RUNTIME)
public DefaultImpl {}

If a stereotype declares both @Alternative and @Reserve, the container automatically detects the
problem and treats it as a definition error.

2.9.1.7. Stereotypes with additional stereotypes

A stereotype may declare other stereotypes.

38

@Action

@Stereotype

@Target(TYPE)

@Retention(RUNTIME)

public @interface AuditableAction {}

Stereotype declarations are transitive - a stereotype declared by a second stereotype is inherited by
all beans and other stereotypes that declare the second stereotype.

Stereotypes declared @Target(TYPE) may not be applied to stereotypes declared @Target({TYPE,
METHOD, FIELD}), @Target(METHOD), @Target(FIELD) or @Target({METHOD, FIELD}).

2.9.2. Declaring the stereotypes for a bean
Stereotype annotations may be applied to a bean class or producer method or field.

@Action
public class LoginAction { ... }

The default scope declared by the stereotype may be overridden by the bean:

@Mock @ApplicationScoped @Action
public class MockLoginAction extends LoginAction { ... }

Multiple stereotypes may be applied to the same bean:

@Dao @Action
public class LoginAction { ... }

2.9.3. Built-in stereotypes

The built-in stereotype @jakarta.enterprise.inject.Model is intended for use with beans that define
the model layer of an MVC web application architecture such as JSF:

@Named

@RequestScoped

@Stereotype

@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)

public @interface Model {}

In addition, the special-purpose @Interceptor stereotype is defined in Declaring the interceptor
bindings of an interceptor.

39

2.10. Problems detected automatically by the
container

When the application violates a rule defined by this specification, the container automatically
detects the problem. There are three kinds of problem:

* Definition errors - occur when a single bean definition violates the rules of this specification. If
a definition error exists, the container must throw a subclass of
jakarta.enterprise.inject.spi.DefinitionException.

* Deployment problems - occur when there are problems resolving dependencies, or inconsistent
specialization (in CDI Full), in a particular deployment. If a deployment problem occurs, the
container must throw a subclass of jakarta.enterprise.inject.spi.DeploymentException.

* Exceptions - occur at runtime
Definition errors are developer errors. They may be detected by tooling at development time, and

are also detected by the container at initialization time. If a definition error exists in a deployment,
initialization will be aborted by the container.

Deployment problems are detected by the container at initialization time. If a deployment problem
exists in a deployment, initialization will be aborted by the container.

The container is permitted to define a non-portable mode, for use at development time, in which
some definition errors and deployment problems do not cause application initialization to abort.

Exceptions represent problems that may not be detected until they actually occur at runtime. All
exceptions defined by this specification are unchecked exceptions. All exceptions defined by this
specification may be safely caught and handled by the application.

40

Chapter 3. Programming model

The container provides built-in support for injection and contextual lifecycle management of the
following kinds of bean:

* Managed beans

* Producer methods and fields
All containers must support managed beans, producer methods and producer fields.

Portable extensions and build compatible extensions may provide other kinds of beans.

3.1. Managed beans

A managed bean is a bean that is implemented by a Java class. This class is called the bean class of
the managed bean.

If a managed bean has a non-static public field, its scope must be a pseudo-scope (for example,
@Dependent or @Singleton). If a managed bean with a non-static public field declares a normal scope,
the container automatically detects the problem and treats it as a definition error.

If the managed bean class is a generic type, it must have scope @Dependent. If a managed bean with a
parameterized bean class declares any scope other than @Dependent, the container automatically
detects the problem and treats it as a definition error.

3.1.1. Which Java classes are managed beans?
A Java class is a managed bean if it meets all of the following conditions:

e [tis not an inner class.
It is a non-abstract class.

o It does not implement jakarta.enterprise.inject.spi.Extension or
jakarta.enterprise.inject.build.compatible.spi.BuildCompatibleExtension.

 Itis not annotated @Vetoed or in a package annotated @Vetoed.

It has an appropriate constructor - either:
o the class has a constructor with no parameters, or

o the class declares a constructor annotated @Inject.
In CDI Full environment, a Java class is a managed bean also if:
« It is an abstract or non-abstract class annotated @Decorator.

All Java classes that meet these conditions are managed beans and thus no special declaration is
required to define a managed bean.

If packages annotated @Vetoed are split across classpath entries, non-portable behavior results. An
application can prevent packages being split across jars by sealing the package as defined by the

41

JAR File Specification.

3.1.2. Bean types of a managed bean

The unrestricted set of bean types for a managed bean contains the bean class, every superclass
and all interfaces it implements directly or indirectly.

The resulting set of bean types for a managed bean consists only of legal bean types, all other types
are removed from the set of bean types.

Note the additional restrictions upon bean types of beans with normal scopes defined in
Unproxyable bean types.

3.1.3. Declaring a managed bean

A managed bean with a constructor that takes no parameters does not require any special
annotations. The following classes are beans:

public class Shop { .. }

class PaymentProcessorImpl implements PaymentProcessor { ... }

If the managed bean does not have a constructor that takes no parameters, it must have a
constructor annotated @Inject. No additional special annotations are required.

A bean class may specify a scope, bean name, stereotypes and/or qualifiers:

public class ShoppingCart { ... }
A managed bean may extend another managed bean:
("loginAction")
public class LoginAction { ... }
("loginAction")

public class MockLoginAction extends LoginAction { ... }

The second bean is a "mock object" that overrides the implementation of LoginAction when running
in an embedded CDI based integration testing environment.

42

https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html#sealing

3.1.4. Default bean name for a managed bean

The default name for a managed bean is the unqualified class name of the bean class, after
converting the first character to lower case.

For example, if the bean class is named ProductList, the default bean name is productList.

3.2. Producer methods

A producer method acts as a source of objects to be injected, where:

* the objects to be injected are not required to be instances of beans, or
* the concrete type of the objects to be injected may vary at runtime, or
* the objects require some custom initialization that is not performed by the bean constructor.

A producer method must be a default-access, public, protected or private, non-abstract method of a
managed bean class. A producer method may be either static or non-static.

If a producer method sometimes returns a null value, then the producer method must have scope
@Dependent. If a producer method returns a null value at runtime, and the producer method
declares any other scope, an IllegalProductException is thrown by the container. This restriction
allows the container to use a client proxy, as defined in Client proxies.

If the producer method return type is a parameterized type, it must specify an actual type
parameter or type variable for each type parameter.

If a producer method return type contains a wildcard type parameter or is an array type whose
component type contains a wildcard type parameter, the container automatically detects the
problem and treats it as a definition error.

If the producer method return type is a parameterized type with a type variable, it must have scope
@Dependent. If a producer method with a parameterized return type with a type variable declares
any scope other than @Dependent, the container automatically detects the problem and treats it as a
definition error.

If a producer method return type is a type variable or an array type whose component type is a
type variable, the container automatically detects the problem and treats it as a definition error.

The application may call producer methods directly. However, if the application calls a producer
method directly, no parameters will be passed to the producer method by the container; the
returned object is not bound to any context; and its lifecycle is not managed by the container.

A bean may declare multiple producer methods.

3.2.1. Bean types of a producer method

The bean types of a producer method depend upon the method return type:

« If the return type is an interface, the unrestricted set of bean types contains the return type, all

43

interfaces it extends directly or indirectly and java.lang.0bject.

 If a return type is primitive or is a Java array type, the unrestricted set of bean types contains
exactly two types: the method return type and java.lang.0Object.

« If the return type is a class, the unrestricted set of bean types contains the return type, every

superclass and all interfaces it implements directly or indirectly.

The resulting set of bean types for a producer method consists only of legal bean types, all other
types are removed from the set of bean types.

Note the additional restrictions upon bean types of beans with normal scopes defined in
Unproxyable bean types.

3.2.2. Declaring a producer method

A producer method may Dbe declared by annotating a method with the
@jakarta.enterprise.inject.Produces annotation.

public class Shop {
PaymentProcessor getPaymentProcessor() { ... }
List<Product> getProducts() { ... }

A producer method may also specify scope, bean name, stereotypes and/or qualifiers.

public class Shop {
("catalog")
List<Product> getProducts() { ... }

If a producer method is annotated @Inject, has a parameter annotated @Disposes, has a parameter
annotated @0bserves, or has a parameter annotated @0bservesAsync, the container automatically
detects the problem and treats it as a definition error.

Interceptors may not declare producer methods. If an interceptor has a method annotated
@Produces, the container automatically detects the problem and treats it as a definition error.

A producer method may have any number of parameters. All producer method parameters are
injection points.

public class OrderFactory {

public Order createCurrentOrder(Shop shop, Product product) {
Order order = new Order(product, shop);
return order;

44

3.2.3. Default bean name for a producer method

The default name for a producer method is the method name, unless the method follows the
JavaBeans property getter naming convention, in which case the default name is the JavaBeans
property name.

For example, this producer method is named products:

public List<Product> getProducts() { ... }

This producer method is named paymentProcessor:

public PaymentProcessor paymentProcessor() { ... }

3.3. Producer fields

A producer field is a slightly simpler alternative to a producer method.

A producer field must be a default-access, public, protected or private, field of a managed bean
class. A producer field may be either static or non-static.

If a producer field sometimes contains a null value when accessed, then the producer field must
have scope @Dependent. If a producer field contains a null value at runtime, and the producer field
declares any other scope, an IllegalProductException is thrown by the container. This restriction
allows the container to use a client proxy, as defined in Client proxies.

If the producer field type is a parameterized type, it must specify an actual type parameter or type
variable for each type parameter.

If a producer field type contains a wildcard type parameter or is an array type whose component
type contains a wildcard parameter, the container automatically detects the problem and treats it
as a definition error.

If the producer field type is a parameterized type with a type variable, it must have scope
@Dependent. If a producer field with a parameterized type with a type variable declares any scope
other than @Dependent, the container automatically detects the problem and treats it as a definition
error.

If a producer field type is a type variable or is an array type whose component type is a type
variable, the container automatically detects the problem and treats it as a definition error.

The application may access producer fields directly. However, if the application accesses a producer
field directly, the returned object is not bound to any context; and its lifecycle is not managed by the

45

container.

A bean may declare multiple producer fields.

3.3.1. Bean types of a producer field
The bean types of a producer field depend upon the field type:

« If the field type is an interface, the unrestricted set of bean types contains the field type, all
interfaces it extends directly or indirectly and java.lang.0bject.

 If a field type is primitive or is a Java array type, the unrestricted set of bean types contains
exactly two types: the field type and java.lang.0bject.

 If the field type is a class, the unrestricted set of bean types contains the field type, every
superclass and all interfaces it implements directly or indirectly.

The resulting set of bean types for a producer field consists only of legal bean types, all other types
are removed from the set of bean types.

Note the additional restrictions upon bean types of beans with normal scopes defined in
Unproxyable bean types.

3.3.2. Declaring a producer field
A producer field may be declared by annotating a field with the

@jakarta.enterprise.inject.Produces annotation.

public class Shop {
PaymentProcessor paymentProcessor =;
List<Product> products =;

A producer field may also specify scope, bean name, stereotypes and/or qualifiers.

public class Shop {
("catalog")
List<Product> products =;

If a producer field is annotated @Inject, the container automatically detects the problem and treats
it as a definition error.

Interceptors may not declare producer fields. If an interceptor has a field annotated @Produces, the
container automatically detects the problem and treats it as a definition error.

3.3.3. Default bean name for a producer field

The default name for a producer field is the field name.

46

For example, this producer field is named products:

public List<Product> products = ...;

3.4. Disposer methods

A disposer method allows the application to perform customized cleanup of an object returned by a
producer method or producer field.

A disposer method must be a default-access, public, protected or private, non-abstract method of a
managed bean class. A disposer method may be either static or non-static.

A bean may declare multiple disposer methods.

3.4.1. Disposed parameter of a disposer method

Each disposer method must have exactly one disposed parameter, of the same type as the
corresponding producer method return type or producer field type. When searching for disposer
methods for a producer method or producer field, the container considers the type and qualifiers of
the disposed parameter. If a producer method or producer field declared by the same bean class is
assignable to the disposed parameter, according to the rules of typesafe resolution defined in
Typesafe resolution, the container must call this method when destroying any instance returned by
that producer method or producer field.

A disposer method may resolve to multiple producer methods or producer fields declared by the
bean class, in which case the container must call it when destroying any instance returned by any
of these producer methods or producer fields.

3.4.2. Declaring a disposer method

A disposer method may be declared by annotating a parameter
@jakarta.enterprise.inject.Disposes. That parameter is the disposed parameter. Qualifiers may be
declared by annotating the disposed parameter:

public class UserDatabaseEntityManager {

public EntityManager create(EntityManagerFactory emf) {
return emf.createEntityManager();

}

public void close(EntityManager em) {
em.close();

}

47

public class Resources {
private EntityManagerFactory emf;
public void setupEntityManagerFactory() {

emf = Persistence.createEntityManagerFactory("userDatabase");

}

public EntityManager start() {
return emf.createEntityManager();

}

public void close(EntityManager em) {
em.close();

}

If a method has more than one parameter annotated @Disposes, the container automatically detects
the problem and treats it as a definition error.

If a disposer method is annotated @Produces or @Inject, has a parameter annotated @0bserves or has
a parameter annotated @0bservesAsync, the container automatically detects the problem and treats
it as a definition error.

Interceptors may not declare disposer methods. If an interceptor has a method that has a
parameter annotated @Disposes, the container automatically detects the problem and treats it as a
definition error.

In addition to the disposed parameter, a disposer method may declare additional parameters,

which may also specify qualifiers. These additional parameters are injection points.

public void close(EntityManager em, Logger log) { ... }

3.4.3. Disposer method resolution
A disposer method is bound to a producer method or producer field if:

* the producer method or producer field is declared by the same bean class as the disposer
method, and

* the producer method or producer field is assignable to the disposed parameter, according to the
rules of typesafe resolution defined in Typesafe resolution (using Assignability of raw and
parameterized types).

If there are multiple disposer methods for a single producer method or producer field, the
container automatically detects the problem and treats it as a definition error.

48

If there is no producer method or producer field declared by the bean class that is assignable to the
disposed parameter of a disposer method, the container automatically detects the problem and
treats it as a definition error.

3.5. Bean constructors

When the container instantiates a bean class, it calls the bean constructor. The bean constructor is a
default-access, public, protected or private constructor of the bean class.

The application may call bean constructors directly. However, if the application directly instantiates
the bean, no parameters are passed to the constructor by the container; the returned object is not
bound to any context; no dependencies are injected by the container; and the lifecycle of the new
instance is not managed by the container.

3.5.1. Declaring a bean constructor

The bean constructor may be identified by annotating the constructor @Inject.

public class ShoppingCart implements Serializable {
private User customer;
public ShoppingCart(User customer) {

this.customer = customer;

}

public ShoppingCart(ShoppingCart original) {
this.customer = original.customer;

}

ShoppingCart() {}

public class Order {
private Product product;

private User customer;

public Order(Product product, User customer) {
this.product = product;
this.customer = customer;

49

public Order(Order original) {
this.product = original.product;
this.customer = original.customer;

Order() {}

NOTE Session scope and conversation scope are only available in CDI Full.

If a bean class does not explicitly declare a constructor using @Inject, the constructor that accepts
no parameters is the bean constructor.

If a bean class has more than one constructor annotated @Inject, the container automatically
detects the problem and treats it as a definition error.

If a bean constructor has a parameter annotated @Disposes, @0bserves, or @0bservesAsync, the
container automatically detects the problem and treats it as a definition error.

A bean constructor may have any number of parameters. All parameters of a bean constructor are
injection points.

3.6. Injected fields

An injected field is a non-static, non-final field of a bean class or of any other classes supporting
injection.

3.6.1. Declaring an injected field

An injected field may be declared by annotating the field @jakarta.inject.Inject.

public class Order {

Product product;
User customer;

If an injected field is annotated @Produces, the container automatically detects the problem and
treats it as a definition error.

50

3.7. Initializer methods

An initializer method is a default-access, public, protected or private, non-abstract, non-static, non-
generic method of a bean class or of any other classes supporting injection.

A bean class may declare multiple (or zero) initializer methods.
Method interceptors are never called when the container calls an initializer method.

The application may call initializer methods directly, but then no parameters will be passed to the
method by the container.

3.7.1. Declaring an initializer method

An initializer method may be declared by annotating the method @jakarta.inject.Inject.

public class Order {

private Product product;
private User customer;

void setProduct(Product product) {
this.product = product;
}

public void setCustomer(User customer) {
this.customer = customer;

}

If a generic method of a bean is annotated @Inject, the container automatically detects the problem
and treats it as a definition error.

If an initializer method is annotated @Produces, has a parameter annotated @Disposes, has a
parameter annotated @Observes, or has a parameter annotated @0bservesAsync, the container
automatically detects the problem and treats it as a definition error.

An initializer method may have any number of parameters. All initializer method parameters are
injection points.

3.8. The default qualifier at injection points

If an injection point declares no qualifier, the injection point has exactly one qualifier, the default
qualifier @Default.

31

The following are equivalent:

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Inject
public void init(@Selected Product product, User customer) {

this.product = product;
this.customer = customer;

@ConversationScoped
public class Order {

private Product product;
private User customer;

@Inject
public void init(@Selected Product product, @Default User customer) {

this.product = product;
this.customer = customer;

The following definitions are equivalent:

public class Payment {
public Payment(BigDecimal amount) { ... }
@Inject Payment(Order order) {

this(order.getAmount();
}

public class Payment {
public Payment(BigDecimal amount) { ... }

@Inject Payment(@Default Order order) {

32

this(order.getAmount();
}

Finally, the following are equivalent:

Order order;

Order order;

3.9. The qualifier @Named at injection points

The use of @Named as an injection point qualifier is not recommended, except in the case of
integration with legacy code that uses string-based names to identify beans.

If an injected field declares a @Named annotation that does not specify the value member, the name
of the field is assumed. For example, the following field has the qualifier @Named("paymentService"):

PaymentService paymentService;

If any other injection point declares a @Named annotation that does not specify the value member, the
container automatically detects the problem and treats it as a definition error.

3.10. Unproxyable bean types

The container uses proxies to provide certain functionality. Certain legal bean types cannot be
proxied by the container:

* classes which don’t have a non-private constructor with no parameters,

» classes which are declared final,

* classes which have non-static, final methods with public, protected or default visibility,

» sealed classes and sealed interfaces,

* primitive types,

* and array types.
A bean type must be proxyable if an injection point resolves to a bean:

* that requires a client proxy, or

 that has a bound interceptor.

Otherwise, the container automatically detects the problem, and treats it as a deployment problem.

33

Chapter 4. Inheritance

A bean may inherit type-level metadata and members from its superclasses.

Inheritance of type-level metadata by beans from their superclasses is controlled via use of the Java
@Inherited meta-annotation. Type-level metadata is never inherited from interfaces implemented
by a bean.

Member-level metadata is not inherited. However, injected fields, initializer methods, lifecycle
callback methods and non-static observer methods are inherited by beans from their superclasses.

The implementation of a bean may be extended by the implementation of a second bean. This
specification recognizes two distinct scenarios in which this situation occurs:

* The second bean specializes the first bean in certain deployment scenarios. In these
deployments, the second bean completely replaces the first, fulfilling the same role in the
system.

* The second bean is simply reusing the Java implementation, and otherwise bears no relation to
the first bean. The first bean may not even have been designed for use as a contextual object.

The two cases are quite dissimilar.

By default, Java implementation reuse is assumed. In this case, the two beans have different roles
in the system, and may both be available in a particular deployment.

The bean developer may explicitly specify that the second bean specializes the first. Then the
second bean inherits, and may not override, the qualifiers and bean name of the first bean. The
second bean is able to serve the same role in the system as the first. In a particular deployment,
only one of the two beans may fulfill that role.

Specialization is only present in CDI Full and is specified therein.

4.1. Inheritance of type-level metadata

Suppose a class X is extended directly or indirectly by the bean class of a managed bean Y.

 If X is annotated with a qualifier type, stereotype or interceptor binding type Z then Y inherits
the annotation if and only if Z declares the @Inherited meta-annotation and neither Y nor any
intermediate class that is a subclass of X and a superclass of Y declares an annotation of type Z.
(This behavior is defined by the Java Language Specification.)

 If X is annotated with a scope type Z then Y inherits the annotation if and only if Z declares the
@Inherited meta-annotation and neither Y nor any intermediate class that is a subclass of X and
a superclass of Y declares a scope type. (This behavior is different to what is defined in the Java
Language Specification.)

A scope type explicitly declared by X and inherited by Y from X takes precedence over default
scopes of stereotypes declared or inherited by Y.

For annotations defined by the application or third-party extensions, it is recommended that:

54

* scope types should be declared @Inherited,

 qualifier types should not be declared @Inherited,

* interceptor binding types should be declared @Inherited, and

* stereotypes may be declared @Inherited, depending upon the semantics of the stereotype.

All scope types, qualifier types, and interceptor binding types defined by this specification adhere
to these recommendations.

The stereotypes defined by this specification are not declared @Inherited.
However, in special circumstances, these recommendations may be ignored.

Note that the @Named annotation is not declared @Inherited and bean names are not inherited unless
specialization is used.

4.2. Inheritance of member-level metadata

Suppose a class X is extended directly or indirectly by the bean class of a managed bean Y.

» If X declares an injected field x then Y inherits x. (This behavior is defined by the Common
Annotations for the Java Platform specification.)

 If X declares an initializer, non-static observer, @PostConstruct or @PreDestroy method x() then Y
inherits x() if and only if neither Y nor any intermediate class that is a subclass of X and a
superclass of Y overrides the method x(). (This behavior is defined by the Common Annotations
for the Java Platform specification.)

» If X declares a non-static method x() annotated with an interceptor binding type Z then Y
inherits the binding if and only if neither Y nor any intermediate class that is a subclass of X and
a superclass of Y overrides the method x(). (This behavior is defined by the Common
Annotations for the Java Platform specification.)

 If X declares a non-static producer or disposer method x() then Y does not inherit this method.
(This behavior is different to what is defined in the Common Annotations for the Java Platform
specification.)

» If X declares a non-static producer field x then Y does not inherit this field. (This behavior is
different to what is defined in the Common Annotations for the Java Platform specification.)

If X is a generic type, and an injection point or observer method declared by X is inherited by Y, and
the declared type of the injection point or event parameter contains type variables declared by X,
the type of the injection point or event parameter inherited in Y is the declared type, after
substitution of actual type arguments declared by Y or any intermediate class that is a subclass of X
and a superclass of Y.

For example, the bean DaoClient has an injection point of type Dao<T>.

public class DaoClient<T> {

Dao<T> dao;

55

This injection point is inherited by UserDaoClient, but the type of the inherited injection point is
Dao<User>.

public class UserDaoClient
extends DaoClient<User> { ... }

36

Chapter 5. Dependency injection and lookup

The container injects references to contextual instances to the following kinds of injection point:

* Any injected field of a bean class

* Any parameter of a bean constructor, bean initializer method, producer method or disposer
method

* Any parameter of an observer method, except for the event parameter
References to contextual instances may also be obtained by programmatic lookup.

In general, a bean type or bean name does not uniquely identify a bean. When resolving a bean at
an injection point, the container considers bean type, qualifiers, selected alternatives and selected
reserves. This allows bean developers to decouple type from implementation.

The container is required to support circularities in the bean dependency graph where at least one
bean participating in every circular chain of dependencies has a normal scope, as defined in
Normal scopes and pseudo-scopes. The container is not required to support circular chains of
dependencies where every bean participating in the chain has a pseudo-scope.

5.1. Modularity

Beans and their clients may be deployed in modules in a module architecture. In a module
architecture, certain modules are considered bean archives. In CDI Lite, a library that is a bean
archive is always an implicit bean archive, as defined in Bean archives. Other kinds of bean
archives exist in CDI Full.

A bean packaged in a certain module is available for injection, lookup and name resolution to
classes packaged in some other module if and only if the bean class of the bean is required to be
accessible to the other module by the class accessibility requirements of the module architecture.

An alternative is not available for injection, lookup or name resolution to classes in a module
unless the alternative is selected for the application.

A reserve is not available for injection, lookup or name resolution to classes in a module unless the
reserve is selected for the application.

5.1.1. Declaring selected alternatives

CDI Lite defines one method of selecting alternatives: the @Priority annotation allows an
alternative to be selected for an entire application. CDI Full defines an additional method of
selecting alternatives, which is specified therein.

5.1.1.1. Declaring selected alternatives for an application

An alternative may be selected for the application:

* by placing the @Priority annotation on the bean class of a managed bean, or

57

* by placing the @Priority annotation on the producer method, field or resource, or

* by placing the @Priority annotation on the bean class that declares the producer method, field
Or resource, or

* by placing the @Priority annotation on a stereotype that is applied to the bean class, producer
method or producer field.

5.1.2. Declaring selected reserves

CDI defines one method of selecting reserves: the @Priority annotation allows a reserve to be
selected for an entire application.

5.1.2.1. Declaring selected reserves for an application

A reserve may be selected for the application:

* by placing the @Priority annotation on the bean class of a managed bean, or
* by placing the @Priority annotation on the producer method, field or resource, or

* by placing the @Priority annotation on a stereotype that is applied to the bean class, producer
method or producer field.

Unlike alternative producers, reserve producers do not inherit priority from their

NOTE
declaring beans.

5.1.3. Enabled and disabled beans
A bean is said to be enabled if:

* itis deployed in a bean archive, and

* itis not a producer method or field of a disabled bean, and

either it is not an alternative, or it is a selected alternative for the application, and

* either it is not a reserve, or it is a selected reserve for the application.

Otherwise, the bean is said to be disabled.

5.1.4. Inter-module injection
A bean is available for injection in a certain module if:

* the bean is not an interceptor
* the bean is enabled,

* the bean is either not an alternative, or the bean is a selected alternative for the application,
and

* the bean is either not a reserve, or the bean is a selected reserve for the application, and

* the bean class is required to be accessible to classes in the module, according to the class
accessibility requirements of the module architecture.

38

5.2. Typesafe resolution

The process of matching a bean to an injection point is called typesafe resolution. Typesafe
resolution usually occurs at application initialization time, allowing the container to warn the user
if any enabled beans have unsatisfied or unresolvable ambiguous dependencies.

5.2.1. Performing typesafe resolution

The container considers bean type and qualifiers when resolving a bean to be injected to an
injection point. The type and qualifiers of the injection point are called the required type and
required qualifiers.

A bean is assignable to a given injection point if:

* The bean has a bean type that matches the required type. For this purpose, primitive types are
considered to match their corresponding wrapper types in java.lang and array types are
considered to match only if their element types are identical. Parameterized and raw types are
considered to match if they are identical or if the bean type is assignable to the required type, as
defined in Assignability of raw and parameterized types.

* The bean has all the required qualifiers. If no required qualifiers were explicitly specified, the
container assumes the required qualifier @Default. A bean has a required qualifier if it has a
qualifier with (a) the same type and (b) the same annotation member value for each member
which is not annotated @jakarta.enterprise.util.Nonbinding.

A bean is eligible for injection to a certain injection point if:
* it is available for injection in the module that contains the class that declares the injection point,

and

* it is assignable to the injection point (using Assignability of raw and parameterized types).

5.2.2. Unsatisfied and ambiguous dependencies

An unsatisfied dependency exists at an injection point when no bean is eligible for injection to the
injection point. An ambiguous dependency exists at an injection point when multiple beans are
eligible for injection to the injection point.

When an ambiguous dependency exists, the container attempts to resolve the ambiguity:
1. The term candidate beans below means all beans that are eligible for injection to the injection
point.
2. The container eliminates all candidate beans that are reserves.

3. If there is exactly one bean remaining, the container selects this bean, and the ambiguous
dependency is called resolvable.

4. Otherwise, if there is no bean remaining and all candidate beans are reserves, then:

a. The container determines the highest priority value and eliminates all candidate beans
except for reserves with the highest priority value.

39

b. If there is exactly one bean remaining, the container selects this bean, and the ambiguous
dependency is called resolvable.

c. Otherwise, the ambiguous dependency is unresolvable.

5. Otherwise, the container eliminates all candidate beans that are not alternatives, except for
producer methods and fields of candidate beans that are alternatives.

6. If there is exactly one bean remaining, the container selects this bean, and the ambiguous
dependency is called resolvable.

7. Otherwise, if all the candidate beans left are alternatives with a priority, or producer methods
or fields of candidate beans that are alternatives with a priority, then:

a. The container determines the highest priority value and eliminates all candidate beans,
except for:

= alternatives with the highest priority value,

= producer methods and fields of alternatives, where either the producer method or field
has the highest priority value, or the declaring alternative has the highest priority value.

b. If there is exactly one bean remaining, the container selects this bean, and the ambiguous
dependency is called resolvable.

c. Otherwise, the ambiguous dependency is unresolvable.

For the purpose of determining the priority of any producer method or field during step 7. a. above,
the priority of the producer method or field is considered first. If the producer method or field does
not have a priority, the priority of the managed bean that declares the producer method or field is
used.

The container must validate all injection points of all enabled beans, all observer methods and all
disposer methods when the application is initialized to ensure that there are no unsatisfied or
unresolvable ambiguous dependencies. If an unsatisfied or unresolvable ambiguous dependency
exists, the container automatically detects the problem and treats it as a deployment problem.

5.2.3. Legal injection point types

Any legal bean type, as defined in Legal bean types may be the required type of an injection point.
Furthermore, the required type of an injection point may contain a wildcard type parameter.
However, a type variable is not a legal injection point type.

If an injection point type is a type variable, the container automatically detects the problem and
treats it as a definition error.

5.2.4. Assignability of raw and parameterized types

A parameterized bean type is considered assignable to a raw required type if the raw types are
identical and all type parameters of the bean type are either unbounded type variables or
java.lang.0Object.

A parameterized bean type is considered assignable to a parameterized required type if they have
identical raw type and for each parameter:

60

* the required type parameter and the bean type parameter are actual types with identical raw
type, and, if the type is parameterized, the bean type parameter is assignable to the required
type parameter according to these rules, or

* the required type parameter is a wildcard, the bean type parameter is an actual type and the
actual type is assignable to the upper bound, if any, of the wildcard and assignable from the
lower bound, if any, of the wildcard, or

* the required type parameter is a wildcard, the bean type parameter is a type variable and the
upper bound of the type variable is assignable to or assignable from the upper bound, if any, of
the wildcard and assignable from the lower bound, if any, of the wildcard, or

* the required type parameter is an actual type, the bean type parameter is a type variable and
the actual type is assignable to the upper bound, if any, of the type variable, or

 the required type parameter and the bean type parameter are both type variables and the
upper bound of the required type parameter is assignable to the upper bound, if any, of the
bean type parameter.

For example, Dao is eligible for injection to any injection point of type @Default Dao<Order>, @Default
Dao<User>, @Default Dao<?>, @Default Dao<? extends Persistent> or @Default Dao<X extends
Persistent> where X is a type variable.

public class Dao<T extends Persistent> { ... }

Furthermore, UserDao is eligible for injection to any injection point of type @Default Dao<User>,
@Default Dao<?>, @Default Dao<? extends Persistent> or @Default Dao<? extends User>.

public class UserDao extends Dao<User> { ... }

A raw bean type is considered assignable to a parameterized required type if the raw types are
identical and all type parameters of the required type are either unbounded type variables or
java.lang.0Object.

5.2.5. Primitive types and null values

For the purposes of typesafe resolution and dependency injection, primitive types and their
corresponding wrapper types in the package java.lang are considered identical and assignable. If
necessary, the container performs boxing or unboxing when it injects a value to a field or
parameter of primitive or wrapper type.

If an injection point of primitive type resolves to a producer method or producer field that returns
a null value at runtime, the container must inject the primitive type’s default value as defined by
the Java Language Specification.

5.2.6. Qualifier annotations with members

Qualifier types may have annotation members.

61

(CHEQUE) class ChequePaymentProcessor implements PaymentProcessor { ... }

(CREDIT_CARD) class CreditCardPaymentProcessor implements PaymentProcessor { ...

Then only ChequePaymentProcessor is a candidate for injection to the following attribute:
(CHEQUE) PaymentProcessor paymentProcessor;

On the other hand, only CreditCardPaymentProcessor is a candidate for injection to this attribute:
(CREDIT_CARD) PaymentProcessor paymentProcessor;

The container calls the equals() method of the annotation member value to compare values.

An annotation member may be excluded from consideration using the @Nonbinding annotation.

(RUNTIME)
({METHOD, FIELD, PARAMETER, TYPE})
public PayBy {
PaymentMethod value();
String comment() default "";

Array-valued or annotation-valued members of a qualifier type should be annotated @Nonbinding in
a portable application. If an array-valued or annotation-valued member of a qualifier type is not
annotated @Nonbinding, non-portable behavior results.

5.2.7. Multiple qualifiers

A bean class or producer method or field may declare multiple qualifiers.

(CHEQUE) class ChequePaymentProcessor implements PaymentProcessor {

Then ChequePaymentProcessor would be considered a candidate for injection into any of the
following attributes:

(CHEQUE) PaymentProcessor paymentProcessor;

62

PaymentProcessor paymentProcessor;

(CHEQUE) PaymentProcessor paymentProcessor;

A bean must declare all of the qualifiers that are specified at the injection point to be considered a
candidate for injection.

5.3. Name resolution

The process of matching a bean to a name is called name resolution. Since there is no typing
information available during name resolution, the container may consider only the bean name.
Name resolution usually occurs at runtime.

A name resolves to a bean if:

 the bean has the given bean name, and
* the bean is available for injection in the module where the name resolution is requested.

For a custom implementation of the Bean interface defined in The Bean interface, the container calls
getName() to determine the bean name.

5.3.1. Ambiguous names
An ambiguous name exists when a name resolves to multiple beans.
When an ambiguous name exists, the container attempts to resolve the ambiguity:

1. The term candidate beans below means all beans to which the name resolves.
2. The container eliminates all candidate beans that are reserves.

3. If there is exactly one bean remaining, the container selects this bean, and the ambiguous name
is called resolvable.

4. Otherwise, if there is no bean remaining and all candidate beans are reserves, then:

a. The container determines the highest priority value and eliminates all candidate beans
except for reserves with the highest priority value.

b. If there is exactly one bean remaining, the container selects this bean, and the ambiguous
name is called resolvable.

c. Otherwise, the ambiguous name is unresolvable.

5. Otherwise, the container eliminates all candidate beans that are not alternatives, except for
producer methods and fields of candidate beans that are alternatives.

6. If there is exactly one bean remaining, the container selects this bean, and the ambiguous name
is called resolvable.

7. Otherwise, if all the candidate beans left are alternatives with a priority, or producer methods
or fields of candidate beans that are alternatives with a priority, then:

63

a. The container determines the highest priority value and eliminates all candidate beans,
except for:

= alternatives with the highest priority value,

= producer methods and fields of alternatives, where either the producer method or field
has the highest priority value, or the declaring alternative has the highest priority value.

b. If there is exactly one bean remaining, the container selects this bean, and the ambiguous
name is called resolvable.

c. Otherwise, the ambiguous name is unresolvable.

For the purpose of determining the priority of any producer method or field during step 7. a. above,
the priority of the producer method or field is considered first. If the producer method or field does
not have a priority, the priority of the managed bean that declares the producer method or field is
used.

All unresolvable ambiguous names are detected by the container when the application is initialized
and treated as a deployment problem.

If there are two beans that are both available for injection in a certain module, and the bean name
of one bean is of the form x.y, where y is a valid bean name, and x is the bean name of the other
bean, then the container treats it as a deployment problem.

5.4. Client proxies

An injected reference, or reference obtained by programmatic lookup, is usually a contextual
reference as defined by Contextual reference for a bean.

A contextual reference to a bean with a normal scope, as defined in Normal scopes and pseudo-
scopes, is not a direct reference to a contextual instance of the bean (the object returned by
Contextual.create()). Instead, the contextual reference is a client proxy object. A client proxy
implements/extends some or all of the bean types of the bean and delegates all method calls to the
current instance (as defined in Normal scopes and pseudo-scopes) of the bean.

There are a number of reasons for this indirection:

* The container must guarantee that when any valid injected reference to a bean of normal scope
is invoked, the invocation is always processed by the current instance of the injected bean. In
certain scenarios, for example if a request scoped bean is injected into an application scoped
bean, or into a servlet, this rule requires an indirect reference. (Note that the @Dependent pseudo-
scope is not a normal scope.)

* The container may use a client proxy when creating beans with circular dependencies. This is
only necessary when the circular dependencies are initialized via a managed bean constructor
or producer method parameter. (Beans with scope @Dependent never have circular
dependencies.)

Client proxies are never required for a bean whose scope is a pseudo-scope such as @Dependent.

Client proxies may be shared between multiple injection points. For example, a particular container

64

might instantiate exactly one client proxy object per bean. (However, this strategy is not required
by this specification.)

5.4.1. Client proxy invocation
Every time a method of the bean is invoked upon a client proxy, the client proxy must:

» obtain a contextual instance of the bean, as defined in Contextual instance of a bean, and

* invoke the method upon this instance.

If the scope is not active, as specified in The active context object for a scope, the client proxy
rethrows the ContextNotActiveException or I1legalStateException.

The behavior of all methods declared by java.lang.0bject, except for toString(), is undefined for a
client proxy. Portable applications should not invoke any method declared by java.lang.Object,
except for toString(), on a client proxy.

5.5. Dependency injection

From time to time the container instantiates beans and other class supporting injection. The
resulting instance may or may not be a contextual instance as defined by Contextual instance of a
bean.

The container is required to perform dependency injection whenever it creates the following
contextual objects:

» contextual instances of managed beans.

The container is also required to perform dependency injection whenever it instantiates the
following non-contextual objects:

* non-contextual instances of managed beans.

The container interacts with instances of beans or objects supporting injection by calling methods
and getting and setting field values.

The object injected by the container may not be a direct reference to a contextual instance of the
bean. Instead, it is an injectable reference, as defined by Injectable references.

5.5.1. Injection using the bean constructor

When the container instantiates a managed bean with a constructor annotated @Inject, the
container calls this constructor, passing an injectable reference to each parameter. If there is no
constructor annotated @Inject, the container calls the constructor with no parameters.

5.5.2. Injection of fields and initializer methods

When the container creates a new instance of a managed bean, the container must:

« Initialize the values of all injected fields. The container sets the value of each injected field to an

65

injectable reference.

 Call all initializer methods, passing an injectable reference to each parameter.
The container must ensure that:
* Initializer methods declared by a class X in the type hierarchy of the bean are called after all

injected fields declared by X or by superclasses of X have been initialized.

* Any @PostConstruct callback declared by a class X in the type hierarchy of the bean is called
after all initializer methods declared by X or by superclasses of X have been called, after all
injected fields declared by X or by superclasses of X have been initialized.

5.5.3. Destruction of dependent objects

When the container destroys an instance of a bean, the container destroys all dependent objects, as
defined in Destruction of objects with scope @Dependent, after the @PreDestroy callback completes.

5.5.4. Invocation of producer or disposer methods

When the container calls a producer or disposer method, the behavior depends upon whether the
method is static or non-static:

» If the method is static, the container must invoke the method.

* Otherwise, if the method is non-static, the container must:

* Obtain a contextual instance of the bean which declares the method, as defined by Contextual
instance of a bean.

* Invoke the method upon this instance, as a business method invocation, as defined in Container

invocations and interception.

The container passes an injectable reference to each injected method parameter. The container is
also responsible for destroying dependent objects created during this invocation, as defined in
Destruction of objects with scope @Dependent.

5.5.5. Access to producer field values

When the container accesses the value of a producer field, the value depends upon whether the
field is static or non-static:

« If the producer field is static, the container must access the field value.
» Otherwise, if the producer field is non-static, the container must:

* Obtain an contextual instance of the bean which declares the producer field, as defined by
Contextual instance of a bean.

* Access the field value of this instance.

5.5.6. Invocation of observer methods

When the container calls an observer method (defined in Observer methods), the behavior depends

66

upon whether the method is static or non-static:

 If the observer method is static, the container must invoke the method.
e Otherwise, if the observer method is non-static, the container must:

* Obtain a contextual instance of the bean which declares the observer method according to
Contextual instance of a bean. If this observer method is a conditional observer method, obtain
the contextual instance that already exists, only if the scope of the bean that declares the
observer method is currently active, without creating a new contextual instance.

* Invoke the observer method on the resulting instance, if any, as a business method invocation,
as defined in Container invocations and interception.

The container must pass the event object to the event parameter and an injectable instance to each
injected method parameter. The container is also responsible for destroying dependent objects
created during this invocation, as defined in Destruction of objects with scope @Dependent.

5.5.7. Injection point metadata

The interface jakarta.enterprise.inject.spi.InjectionPoint provides access to metadata about an
injection point. An instance of InjectionPoint may represent:

* an injected field or a parameter of a bean constructor, initializer method, producer method,
disposer method or observer method, or

* an instance obtained dynamically using Instance.get().

public interface InjectionPoint {
public Type getType();
public Set<Annotation> getQualifiers();
public Bean<?> getBean();
public Member getMember();
public Annotated getAnnotated();
public boolean isDelegate();
public boolean isTransient();

* The getBean() method returns the Bean object representing the bean that defines the injection
point. If the injection point does not belong to a bean, getBean() returns a null value. If the
injection point represents a dynamically obtained instance, the getBean() method should return
the Bean object representing the bean that defines the Instance injection point.

* The getType() and getQualifiers() methods return the required type and required qualifiers of
the injection point. If the injection point represents a dynamically obtained instance, the
getType() and getQualifiers() methods should return the required type (as defined by
Instance.select()), and required qualifiers of the injection point including any additional
required qualifiers (as defined by Instance.select()).

* The getMember () method returns the Field object in the case of field injection, the Method object
in the case of method parameter injection, or the Constructor object in the case of constructor
parameter injection. If the injection point represents a dynamically obtained instance, the

67

getMember () method returns the Field object representing the field that defines the Instance
injection point in the case of field injection, the Method object representing the method that
defines the Instance injection point in the case of method parameter injection, or the
Constructor object representing the constructor that defines the Instance injection point in the
case of constructor parameter injection.

* The getAnnotated() method may, in CDI Lite environment, always return null. Behavior of this
method in CDI Full is specified therein.

* The isDelegate() method may, in CDI Lite environment, always return false. Behavior of this
method in CDI Full is specified therein.

* The isTransient() method returns true if the injection point is a transient field, and false
otherwise. If the injection point represents a dynamically obtained instance then the
isTransient() method returns true if the Instance injection point is a transient field, and false
otherwise.

Occasionally, a bean with scope @Dependent needs to access metadata relating to the object into
which it is injected. For example, the following producer method creates injectable Logger s. The log
category of a Logger depends upon the class of the object into which it is injected:

Logger createlogger(InjectionPoint injectionPoint) {
return Logger.getlLogger(injectionPoint.getMember().getDeclaringClass().getName()
)i
}

The container must provide a bean with scope @Dependent, bean type InjectionPoint and qualifier
@Default, allowing dependent objects, as defined in Dependent objects, to obtain information about
the injection point to which they belong.

If a bean that declares any scope other than @Dependent has an injection point of type InjectionPoint
and qualifier @Default, the container automatically detects the problem and treats it as a definition
error.

If a disposer method has an injection point of type InjectionPoint and qualifier Default, the
container automatically detects the problem and treats it as a definition error.

If a class supporting injection that is not a bean has an injection point of type InjectionPoint and
qualifier @Default, the container automatically detects the problem and treats it as a definition
error.

5.5.8. Bean metadata
The interfaces Bean and Interceptor provide metadata about a bean.

The container must provide beans allowing a bean instance to obtain a Bean or Interceptor instance
containing its metadata:

* a bean with scope @Dependent, qualifier @Default and type Bean which can be injected into any
bean instance

68

* a bean with scope @Dependent, qualifier @Default and type Interceptor which can be injected into
any interceptor instance

Additionally, the container must provide beans allowing interceptors to obtain information about
the beans they intercept:

* a bean with scope @Dependent, qualifier @Intercepted and type Bean which can be injected into
any interceptor instance.

These beans are passivation capable dependencies, as defined in Passivation capable dependencies.

If an Interceptor instance is injected into a bean instance other than an interceptor instance, the
container automatically detects the problem and treats it as a definition error.

If a Bean instance with qualifier @Intercepted is injected into a bean instance other than an
interceptor instance, the container automatically detects the problem and treats it as a definition
error.

The injection of bean metadata is restricted. If:

* the injection point is a field, an initializer method parameter or a bean constructor, with
qualifier @Default, then the type parameter of the injected Bean, or Interceptor must be the same
as the type declaring the injection point, or

* the injection point is a field, an initializer method parameter or a bean constructor of an
interceptor, with qualifier @Intercepted, then the type parameter of the injected Bean must be an
unbounded wildcard, or

* the injection point is a producer method parameter then the type parameter of the injected Bean
must be the same as the producer method return type, or

* the injection point is a parameter of a disposer method then the container automatically detects
the problem and treats it as a definition error.

Otherwise, the container automatically detects the problem and treats it as a definition error.

("Order") public class OrderProcessor {
Bean<OrderProcessor> bean;

public void getBeanName() {
return bean.getName();

5.6. Programmatic lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For
example, it may not be used when:

69

* the bean type or qualifiers vary dynamically at runtime, or

* depending upon the deployment, there may be no bean which satisfies the type and qualifiers,
or

» we would like to iterate over all beans of a certain type.

In these situations, an instance of the jakarta.enterprise.inject.Instance interface may be
injected:

Instance<PaymentProcessor> paymentProcessor;
The method get() returns a contextual reference:
PaymentProcessor pp = paymentProcessor.get();
Any combination of qualifiers may be specified at the injection point:
(CHEQUE) Instance<PaymentProcessor> chequePaymentProcessor;
Or, the @Any qualifier may be used, allowing the application to specify qualifiers dynamically:

Instance<PaymentProcessor> anyPaymentProcessor;
Annotation qualifier = synchronously ? new SynchronousQualifier() : new

AsynchronousQualifier();
PaymentProcessor pp = anyPaymentProcessor.select(qualifier).get().process(payment);

In this example, the returned bean has qualifier @Synchronous or @Asynchronous depending upon the
value of synchronously.

It’s even possible to iterate over a set of beans:

Instance<PaymentProcessor> anyPaymentProcessor;

for (PaymentProcessor pp: anyPaymentProcessor) pp.test();

5.6.1. The Instance interface

The Instance interface provides a method for obtaining instances of beans with a specified
combination of required type and qualifiers, and inherits the ability to iterate beans with that
combination of required type and qualifiers from java.lang.Iterable:

public interface Instance<T> extends Iterable<T>, Provider<T> {

70

Instance<T> select(Annotation... qualifiers);
<U extends T> Instance<U> select(Class<U> subtype, Annotation... qualifiers);
<U extends T> Instance<U> select(Typeliteral<U> subtype, Annotation... qualifiers

Stream<T> stream();

boolean isUnsatisfied();
boolean isAmbiguous();
boolean isResolvable();

void destroy(T instance);

Hand1le<T> getHandle();
Iterable<Handle<T>> handles();
Stream<Handle<T>> handlesStream();

For an injected Instance:

* the required type is the type parameter specified at the injection point, and

* the required qualifiers are the qualifiers specified at the injection point.

For example, this injected Instance has required type PaymentProcessor and required qualifier @Any:

Instance<PaymentProcessor> anyPaymentProcessor;

The select() method returns a child Instance for a given required type and additional required
qualifiers. If no required type is given, the required type is the same as the parent. Rules specified
at The default qualifier at injection points are applied before performing typesafe resolution.

For example, this child Instance has required type AsynchronousPaymentProcessor and additional

required qualifier @Asynchronous:

Instance<AsynchronousPaymentProcessor> async = anyPaymentProcessor.select(
AsynchronousPaymentProcessor.class, new AsynchronousQualifier());

The required type must not be a wildcard type. If an injected Instance has a required type that is
either a wildcard type or an Event whose specified type is a wildcard type, the container treats it as
a definition error. If a programmatically obtained Instance has a required type that is a wildcard
type, non-portable behavior results.

If an injection point of raw type Instance is defined, the container automatically detects the
problem and treats it as a definition error.

If two instances of the same non repeating qualifier type are passed to select(), an

71

I1legalArgumentException is thrown.

If an instance of an annotation that is not a qualifier type is passed to select(), an
I1legalArgumentException is thrown.

The get() method must:

* Identify a bean that has the required type and required qualifiers and is eligible for injection
into the class into which the parent Instance was injected, according to the rules of typesafe
resolution, as defined in Performing typesafe resolution, resolving ambiguities according to
Unsatisfied and ambiguous dependencies.

o If typesafe resolution results in an unsatisfied dependency, throw an
UnsatisfiedResolutionException. If typesafe resolution results in an unresolvable ambiguous
dependency, throw an AmbiguousResolutionException.

» Otherwise, obtain a contextual reference for the bean and the required type, as defined in
Contextual reference for a bean.

The iterator () method must:

* Identify the set of beans that have the required type and required qualifiers and are eligible for
injection into the class into which the parent Instance was injected, according to the rules of
typesafe resolution, as defined in Performing typesafe resolution, resolving ambiguities
according to Unsatisfied and ambiguous dependencies.

* If typesafe resolution results in an unsatisfied dependency, the set of resulting beans is empty. If
typesafe resolution results in an ambiguous dependency and the set of candidate beans
contains at least one alternative or reserve, the set of resulting beans contains all beans that
were not eliminated during ambiguity resolution. If typesafe resolution results in an ambiguous
dependency and the set of candidate beans contains no alternative or reserve, the set of
resulting beans contains all candidate beans.

* Return an Iterator, that iterates over the set of contextual references for the resulting beans
and required type, as defined in Contextual reference for a bean.
The stream() method is a Stream equivalent of the aforementioned iterator () method.

The methods isUnsatisfied(), isAmbiguous() and isResolvable() must:

* Identify the set of beans that have the required type and required qualifiers and are eligible for
injection into the class into which the parent Instance was injected, according to the rules of
typesafe resolution, as defined in Performing typesafe resolution, resolving ambiguities
according to Unsatisfied and ambiguous dependencies.

e The method isUnsatisfied() returns true if there is no bean found, or false otherwise.

* The method isAmbiguous() returns true if there is more than one bean found, or false
otherwise.

* The method isResolvable() returns true if there is exactly one bean found, or false otherwise.

The method destroy() instructs the container to destroy the instance. The bean instance passed to
destroy() should be a dependent scoped bean instance obtained from the same Instance object, or a

72

client proxy for a normal scoped bean. Applications are encouraged to always call destroy() when
they no longer require an instance obtained from Instance. All built-in normal scoped contexts
support destroying bean instances. An UnsupportedOperationException is thrown if the active context
object for the scope type of the bean does not support destroying bean instances.

The getHandle() method must:

* Return an initialized contextual reference Handle<T> for a bean that has the required type and
qualifiers and is eligible for injection. The contextual reference must be resolved lazily, i.e.
when first needed. The Handle interface is described in a separate paragraph.

* Throw UnsatisfiedResolutionException if there is no bean with given type and qualifiers.

* Throw AmbiguousResolutionException if there is more than one bean given type and qualifiers.
The handles() method must:

* Allow iterating over contextual reference handles for all beans that would be produced by the
iterator() (or stream()) method.

* Return stateless Iterable. Therefore, each Iterable#titerator() produces a new set of handles.

The handlesStream() method is a Stream equivalent of the aforementioned handles() method.

5.6.1.1. The Handle interface

Handle is an interface representing a contextual reference handle. It is an abstraction allowing
inspection of bean metadata via Bean<?> objects. Handles have to resolve their contextual
references lazily, i.e. when their get() method is invoked. Last but not least, this interface can be
used to destroy the contextual instance once not needed.

public interface Handle<T> extends Auto(Closeable {

T get();

Bean<T> getBean();
void destroy();
void close();

The get() method returns a contextual reference object. The contextual reference is resolved lazily.
Throws IllegalStateException if invoked on Handle that previously successfully destroyed its
underlying contextual reference.

The getBean() method returns the Bean object representing metadata of the given contextual
instance.

The destroy() method destroys the contextual instance and is a no-op if:

* called multiple times

 the producing Instance does not exist

73

* the handle does not hold a contextual reference, i.e. get() was never called
The rules for destroying instances are the same as with Instance#destroy().

The close() method delegates to the aforementioned destroy() method.

5.6.2. The built-in Instance
The container must provide a built-in bean that:
* is eligible for injection to any injection point with required type Instance<X> or Provider<X>, for
any legal bean type X,
* has any qualifiers
* has scope @Dependent,
* has no bean name, and

* has an implementation provided automatically by the container.

5.6.3. Using AnnotationLiteral and Typeliteral
jakarta.enterprise.util.AnnotationLiteral makes it easier to specify qualifiers when calling

select():

public PaymentProcessor getSynchronousPaymentProcessor(PaymentMethod paymentMethod) {

class SynchronousQualifier extends AnnotationlLiteral<Synchronous>
implements Synchronous {}

class PayByQualifier extends AnnotationLiteral<PayBy>
implements PayBy {
public PaymentMethod value() { return paymentMethod; }

}

return anyPaymentProcessor.select(new SynchronousQualifier(), new PayByQualifier(
)).get();
}

jakarta.enterprise.util.TypelLiteral makes it easier to specify a parameterized type with actual
type parameters when calling select():

public PaymentProcessor<Cheque> getChequePaymentProcessor() {
PaymentProcessor<Cheque> pp = anyPaymentProcessor
.select(new Typeliteral<PaymentProcessor<Cheque>>() {}).get();

74

5.6.4. Built-in annotation literals

The following built-in annotations define a Literal static nested class to support inline instantiation
of the specific annotation type:

* jakarta.enterprise.inject.Any

* jakarta.enterprise.inject.Default

* jakarta.enterprise.inject.Specializes

* jakarta.enterprise.inject.Vetoed

* jakarta.enterprise.util.Nonbinding

* jakarta.enterprise.context.Initialized

* jakarta.enterprise.context.Destroyed

* jakarta.enterprise.context.RequestScoped

* jakarta.enterprise.context.SessionScoped

* jakarta.enterprise.context.ApplicationScoped

* jakarta.enterprise.context.Dependent

* jakarta.enterprise.context.ConversationScoped

* jakarta.enterprise.inject.Alternative

* jakarta.enterprise.inject.Reserve

* jakarta.enterprise.inject.Typed

The Literal class might be used to instantiate the matching AnnotationLiteral:

Default defaultLiteral = new Default.Literal();

Annotations without members provide the default AnnotationlLiteral instance declared as a
constant named INSTANCE:

RequestScoped requestScopedlLiteral = RequestScoped.Literal.INSTANCE;

Annotations having members do not provide the default AnnotationlLiteral instance. Instead, a
constructor or factory method named of can be used:

Initialized initializedForApplicationScoped = new Initialized.Literal
(ApplicationScoped.class);

Initialized initializedForRequestScoped = Initialized.Literal.of(RequestScoped.class);

See also the annotation javadoc for more information about specific Literal members.

In addition, CDI also provides annotation literals for the following JSR 330 annotations:

75

jakarta.
jakarta.
jakarta.

jakarta.

inject.Inject with jakarta.enterprise.inject.literal.InjectLiteral class
inject.Named with jakarta.enterprise.inject.literal.NamedLiteral class
inject.Qualifier with jakarta.enterprise.inject.literal.QualifierLiteral class

inject.Singleton with jakarta.enterprise.inject.literal.SingletonlLiteral class

They can be used like static nested classes described above.

76

Chapter 6. Scopes and contexts

Associated with every scope type is a context object. The context object determines the lifecycle and
visibility of instances of all beans with that scope. In particular, the context object defines:

* When a new instance of any bean with that scope is created

* When an existing instance of any bean with that scope is destroyed

* Which injected references refer to any instance of a bean with that scope

The context implementation collaborates with the container via the Context and Contextual
interfaces to create and destroy contextual instances.

6.1. The Contextual interface

The interface jakarta.enterprise.context.spi.Contextual defines operations to create and destroy
contextual instances of a certain type. Any implementation of Contextual is called a contextual type.
In particular, the Bean interface defined in The Bean interface extends Contextual, so all beans are
contextual types.

public interface Contextual<T> {
public T create(CreationalContext<T> creationalContext);
public void destroy(T instance, CreationalContext<T> creationalContext);

* create() is responsible for creating new contextual instances of the type.

* destroy() is responsible for destroying instances of the type. In particular, it is responsible for
destroying all dependent objects of an instance.

If an exception occurs while creating an instance, the exception is rethrown by the create()
method. If the exception is a checked exception, it must be wrapped and rethrown as an
(unchecked) CreationException.

If an exception occurs while destroying an instance, the exception must be caught by the destroy()
method.

If the application invokes a contextual instance after it has been destroyed, the behavior is
undefined.

The container may define implementations of the Contextual interface that do not extend Bean, but
it is not recommended that applications directly implement Contextual.

6.1.1. The CreationalContext interface

The interface jakarta.enterprise.context.spi.CreationalContext provides operations that are used
by the Contextual implementation during instance creation and destruction.

77

public interface CreationalContext<T> {
public void push(T incompleteInstance);
public void release();

* push() registers an incompletely initialized contextual instance the with the container. A
contextual instance is considered incompletely initialized until it is returned by the create()
method.

* release() destroys all dependent objects, as defined in Dependent objects, of the instance which
is being destroyed, by passing each dependent object to the destroy() method of its Contextual
object.

The implementation of Contextual is not required to call push(). However, for certain bean scopes,
invocation of push() between instantiation and injection helps the container minimize the use of
client proxy objects (which would otherwise be required to allow circular dependencies).

If Contextual.create() calls push(), it must also return the instance passed to push().

Contextual.create() should use the given CreationalContext when obtaining contextual references
to inject, as defined in Contextual reference for a bean, in order to ensure that any dependent
objects are associated with the contextual instance that is being created.

Contextual.destroy() should call release() to allow the container to destroy dependent objects of
the contextual instance.

6.2. The Context interface

The jakarta.enterprise.context.spi.Context interface provides an operation for obtaining
contextual instances with a particular scope of any contextual type. Any instance of Context is
called a context object.

The context object is responsible for creating and destroying contextual instances by calling
operations of the Contextual interface.

The Context interface is called by the container. It should not be called directly by the application.

public interface Context {
public Class<? extends Annotation> getScope();
boolean isActive();
public <T> T get(Contextual<T> bean);
public <T> T get(Contextual<T> bean, CreationalContext<T> creationalContext);

public interface AlterableContext extends Context {
public void destroy(Contextual<?> contextual);

}

78

The method getScope() returns the scope type of the context object.

At a particular point in the execution of the program a context object may be active with respect to
the current thread. When a context object is active the isActive() method returns true. Otherwise,
we say that the context object is inactive and the isActive() method returns false.

The get() method obtains contextual instances of the contextual type represented by the given
instance of Contextual. The get() method may either:

* return an existing instance of the given contextual type, or
* if no CreationalContext is given, return a null value, or

 if a CreationalContext is given, create a new instance of the given contextual type by calling
Contextual.create(), passing the given CreationalContext, and return the new instance.

The get() method may not return a null value unless no CreationalContext is given, or
Contextual.create() returns a null value.

The get() method may not create a new instance of the given contextual type unless a
CreationalContext is given.

The destroy() method destroys an existing contextual instance, removing it from the context
instance.

The AlterableContext interface was introduced in CDI 1.1 to allow bean instances to be destroyed by
the application. Extensions providing context implementations for normal scopes should
implement AlterableContext instead of Context.

If the context object is inactive, the get() and destroy() methods must throw a
ContextNotActiveException.

The context object is responsible for destroying any contextual instance it creates by passing the
instance to the destroy() method of the Contextual object representing the contextual type. A
destroyed instance must not subsequently be returned by the get() method.

The context object must pass the same instance of CreationalContext to Contextual.destroy() that it
passed to Contextual.create() when it created the instance.

6.3. Normal scopes and pseudo-scopes

Most scopes are normal scopes. The context object for a normal scope type is a mapping from each
contextual type with that scope to an instance of that contextual type. There may be no more than
one mapped instance per contextual type per thread. The set of all mapped instances of contextual
types with a certain scope for a certain thread is called the context for that scope associated with
that thread.

A context may be associated with one or more threads. A context with a certain scope is said to
propagate from one point in the execution of the program to another when the set of mapped
instances of contextual types with that scope is preserved.

79

The context associated with the current thread is called the current context for the scope. The
mapped instance of a contextual type associated with a current context is called the current
instance of the contextual type.

The get() operation of the context object for an active normal scope returns the current instance of
the given contextual type.

At certain points in the execution of the program a context may be destroyed. When a context is
destroyed, all mapped instances belonging to that context are destroyed by passing them to the
Contextual.destroy() method.

Contexts with normal scopes must obey the following rule:

Suppose beans A, B and Z all have normal scopes. Suppose A has an injection point x, and B has an
injection point y. Suppose further that both x and y resolve to bean Z according to the rules of typesafe
resolution. If a is the current instance of A, and b is the current instance of B, then both a.x and b.y
refer to the same instance of Z. This instance is the current instance of Z.

Any scope that is not a normal scope is called a pseudo-scope. The concept of a current instance is
not well-defined in the case of a pseudo-scope.

All normal scopes must be explicitly declared @NormalScope, to indicate to the container that a client
proxy is required.

All pseudo-scopes must be explicitly declared @Scope, to indicate to the container that no client
proxy is required.

All scopes defined by this specification, except for the @Dependent pseudo-scope, are normal scopes.

6.4. Dependent pseudo-scope

The @Dependent scope type is a pseudo-scope. Beans declared with scope type @Dependent behave
differently to beans with other built-in scope types.

When a bean is declared to have @Dependent scope:

» No injected instance of the bean is ever shared between multiple injection points.

* Any instance of the bean injected into an object that is being created by the container is bound
to the lifecycle of the newly created object.

* Any instance of the bean that receives a producer method, producer field, disposer method or
observer method invocation exists to service that invocation only.

* Any instance of the bean injected into method parameters of a disposer method or observer
method exists to service the method invocation only (except for observer methods of container
lifecycle events).

Every invocation of the get() operation of the Context object for the @Dependent scope with a
CreationalContext returns a new instance of the given bean.

Every invocation of the get() operation of the Context object for the @Dependent scope with no

80

CreationalContext returns a null value.

The @Dependent scope is always active.

6.4.1. Dependent objects

Many instances of beans with scope @Dependent belong to some other bean and are called dependent
objects.
* Instances of interceptors are dependent objects of the bean instance they intercept.

* An instance of a bean with scope @Dependent injected into a field, bean constructor or initializer
method is a dependent object of the bean into which it was injected.

* An instance of a bean with scope @Dependent injected into a producer method is a dependent
object of the producer method bean instance that is being produced.

* An instance of a bean with scope @Dependent obtained by direct invocation of an Instance is a
dependent object of the instance of Instance.

6.4.2. Destruction of objects with scope @Dependent

Dependent objects of a contextual instance are destroyed when Contextual.destroy() calls
CreationalContext.release(), as defined in The CreationalContext interface.

Additionally, the container must ensure that:
+ all dependent objects of a non-contextual instance of a bean are destroyed when the instance is

destroyed by the container,

 all @EDependent scoped contextual instances injected into method parameters of a disposer
method or an observer method are destroyed when the invocation completes,

+ all @Dependent scoped contextual instances injected into method or constructor parameters that
are annotated with @TransientReference are destroyed when the invocation completes, and

* any @Dependent scoped contextual instance created to receive a producer method, producer
field, disposer method or observer method invocation is destroyed when the invocation
completes.

Finally, the container is permitted to destroy any @Dependent scoped contextual instance at any time
if the instance is no longer referenced by the application (excluding weak, soft and phantom
references).

6.5. Contextual instances and contextual references

The Context object is the ultimate source of the contextual instances that underly contextual
references.

6.5.1. The active context object for a scope

From time to time, the container must obtain an active context object for a certain scope type. The
container must search for an active instance of Context associated with the scope type.

81

 If no active context object exists for the scope type, the container throws a
ContextNotActiveException.

« If more than one active context object exists for the given scope type, the container must throw
an I1legalStateException.

If there is exactly one active instance of Context associated with the scope type, we say that the
scope is active.

6.5.2. Activating Built In Contexts

Certain built in contexts support the ability to be activated and deactivated. This allows developers
to control built-in contexts in ways that they could also manage custom built contexts.

When activating and deactivating built in contexts, it is important to realize that they can only be
activated if not already active within a given thread.

6.5.2.1. Activating a Request Context

Request contexts can be managed either programmatically or via interceptor.

To programmatically manage request contexts, the container provides a built in bean that is
@Dependent scoped and of type RequestContextController that allows you to activate and deactivate a
request context on the current thread. The object should be considered stateful, invoking the same
instance on different threads may not work properly, non-portable behavior may occur.

public interface RequestContextController {
boolean activate();
void deactivate() throws ContextNotActiveException;

When the activate() method is called, if the request context is not already active on the current
thread then it will be activated and the method returns true. Otherwise, the method returns false.

When the deactivate() method is called, if this controller started the request context then the
request context is stopped. The method does nothing if this controller did not activate the context
and the context is active. This method throws a ContextNotActiveException if there is no request
context active.

If within the same thread the activate() and deactivate() methods are invoked repeatedly, the
instances between the activations are not the same instances, each request context should be
assumed to be new.

To automatically start a request context via interceptor binding, the container provides an
interceptor @ActivateRequestContext which will activate a request context if not already active prior
to the method’s invocation, and deactivate it upon method completion, with the same rules as in
RequestContextController. The interceptor is automatically registered with a priority of
PLATFORM_BEFORE + 100.

82

6.5.3. Contextual instance of a bean
From time to time, the container must obtain a contextual instance of a bean. The container must:

* obtain the active context object for the bean scope, then

 obtain an instance of the bean by calling Context.get(), passing the Bean instance representing
the bean and an instance of CreationalContext.

From time to time, the container attempts to obtain a contextual instance of a bean that already
exists, without creating a new contextual instance. The container must determine if the scope of the
bean is active and if it is:

* obtain the active context object for the bean scope, then

» attempt to obtain an existing instance of the bean by calling Context.get(), passing the Bean
instance representing the bean without passing any instance of CreationalContext.

If the scope is not active, or if Context.get() returns a null value, there is no contextual instance
that already exists.

A contextual instance of any of the built-in kinds of bean defined in Programming model is
considered an internal container construct, and it is therefore not strictly required that a
contextual instance of a built-in kind of bean directly implement the bean types of the bean.
However, in this case, the container is required to transform its internal representation to an object
that does implement the bean types expected by the application before injecting or returning a
contextual instance to the application.

6.5.4. Contextual reference for a bean

From time to time, the container must obtain a contextual reference for a bean and a given bean
type of the bean. A contextual reference implements the given bean type and all bean types of the
bean which are Java interfaces. A contextual reference is not, in general, required to implement all
concrete bean types of the bean.

Contextual references must be obtained with a given CreationalContext, allowing any instance of
scope @Dependent that is created to be later destroyed.

* If the bean has a normal scope and the given bean type cannot be proxied by the container, as
defined in Unproxyable bean types, the container throws an UnproxyableResolutionException.

* If the bean has a normal scope, then the contextual reference for the bean is a client proxy, as
defined in Client proxies, created by the container, that implements the given bean type and all
bean types of the bean which are Java interfaces.

* Otherwise, if the bean has a pseudo-scope, the container must obtain a contextual instance of
the bean. If the bean has scope @Dependent, the container must associate it with the
CreationalContext.

The container must ensure that every injection point of type InjectionPoint and qualifier @Default
of any dependent object instantiated during this process receives:

* an instance of InjectionPoint representing the injection point into which the dependent object

83

will be injected, or

» anull value if it is not being injected into any injection point.

6.5.5. Contextual reference validity

A contextual reference for a bean is valid only for a certain period of time. The application should
not invoke a method of an invalid reference.

The validity of a contextual reference for a bean depends upon whether the scope of the bean is a
normal scope or a pseudo-scope.

* Any reference to a bean with a normal scope is valid as long as the application maintains a hard
reference to it. However, it may only be invoked when the context associated with the normal
scope is active. If it is invoked when the context is inactive, a ContextNotActiveException is
thrown by the container.

* Any reference to a bean with a normal scope is invalid after CDI container shutdown.
Maintaining such reference and attempting to use it after container shutdown results in an
I1llegalStateException.

* Any reference to a bean with a pseudo-scope (such as @Dependent) is valid until the bean
instance to which it refers is destroyed. It may be invoked even if the context associated with
the pseudo-scope is not active. If the application invokes a method of a reference to an instance
that has already been destroyed, the behavior is undefined.

6.5.6. Injectable references

From time to time, the container must obtain an injectable reference for an injection point. The
container must:

* Identify a bean according to the rules defined in Typesafe resolution and resolving ambiguities
according to Unsatisfied and ambiguous dependencies.
* Obtain a contextual reference for this bean and the type of the injection point according to
Contextual reference for a bean.
For certain combinations of scopes, the container is permitted to optimize the above procedure:
* The container is permitted to directly inject a contextual instance of the bean, as defined in
Contextual instance of a bean.

o If an incompletely initialized instance of the bean is registered with the current
CreationalContext, as defined in The Contextual interface, the container is permitted to directly
inject this instance.

However, in performing these optimizations, the container must respect the rules of injectable
reference validity.

6.5.7. Injectable reference validity

Injectable references to a bean must respect the rules of contextual reference validity, with the

84

following exceptions:
* A reference to a bean injected into a field, bean constructor or initializer method is only valid
until the object into which it was injected is destroyed.

» A reference to a bean injected into a producer method is only valid until the producer method
bean instance that is being produced is destroyed.

» A reference to a bean injected into a disposer method or observer method is only valid until the

invocation of the method completes.

The application should not invoke a method of an invalid injected reference. If the application
invokes a method of an invalid injected reference, the behavior is undefined.

6.6. Context management for built-in scopes

The container must provide an implementation of the Context interface for each of the built-in
scopes defined in Built-in scope types. These implementations depend on the platform the
container is running.

The context associated with a built-in normal scope propagates across local, synchronous Java
method calls. The context does not propagate across remote method invocations or to
asynchronous processes.

6.6.1. Request context lifecycle

The request context is provided by a built-in context object for the built-in scope type
@RequestScoped.

An event with qualifier @Initialized(RequestScoped.class) is synchronously fired when the request
context is initialized. An event with qualifier @BeforeDestroyed(RequestScoped.class) is
synchronously fired when the request context is about to be destroyed, i.e. before the actual
destruction. An event with qualifier @Destroyed(RequestScoped.class) is synchronously fired when
the request context is destroyed, i.e. after the actual destruction.

The request context is active:

* during notification of an asynchronous observer method, and

* during @PostConstruct callback of any bean.
The request context is destroyed:

« after the invocation of an asynchronous observer method completes, and

« after the @PostConstruct callback completes, if it did not already exist when the @PostConstruct
callback occurred.

6.6.2. Application context lifecycle

The application context is provided by a built-in context object for the built-in scope type
@ApplicationScoped.

85

An event with qualifier @Initialized(ApplicationScoped.class) is synchronously fired when the
application context is initialized. An event with qualifier
@BeforeDestroyed(ApplicationScoped.class) is synchronously fired when the application context is
about to be destroyed, ie. before the actual destruction. An event with qualifier
@Destroyed(ApplicationScoped.class) is synchronously fired when the application context is
destroyed, i.e. after the actual destruction.

6.7. Context management for custom scopes

Custom context implementations are encouraged to synchronously fire:

» an event with qualifier @Initialized(X.class) when a custom context is initialized, i.e. ready for
use,

* an event with qualifier @BeforeDestroyed(X.class) when a custom context is about to be
destroyed, i.e. before the actual destruction,

* an event with qualifier @Destroyed(X.class) when a custom context is destroyed, i.e. after the
actual destruction,

where X is the scope type associated with the context.
A suitable event payload should be chosen.

Build compatible extensions may define custom context classes for custom scopes, but they may not
define custom context classes for built-in scopes.

86

Chapter 7. Lifecycle of contextual instances

The lifecycle of a contextual instance of a bean is managed by the context object for the bean’s
scope, as defined in Scopes and contexts.

Every bean in the system is represented by an instance of the Bean interface defined in The Bean
interface. This interface is a subtype of Contextual. To create and destroy contextual instances, the
context object calls the create() and destroy() operations defined by the interface Contextual, as
defined in The Contextual interface.

7.1. Restriction upon bean instantiation

There are very few programming restrictions upon the bean class of a bean. In particular, the class
is a concrete class and is not required to implement any special interface or extend any special
superclass. Therefore, bean classes are easy to instantiate and unit test.

However, if the application directly instantiates a bean class, instead of letting the container
perform instantiation, the resulting instance is not managed by the container and is not a
contextual instance as defined by Contextual instance of a bean. Furthermore, the capabilities listed
in Functionality provided by the container to the bean will not be available to that particular
instance. In a deployed application, it is the container that is responsible for instantiating beans
and initializing their dependencies.

If the application requires more control over instantiation of a contextual instance, a producer
method or field may be used. Any Java object may be returned by a producer method or field. It is
not required that the returned object be a contextual reference for a bean. However, if the object is
not a contextual reference for another bean, the object will be contextual instance of the producer
method bean, and therefore available for injection into other objects and use in name resolution,
but the other capabilities listed in Functionality provided by the container to the bean will not be
available to the object.

In the following example, a producer method returns instances of other beans:

public class PaymentStrategyProducer implements Serializable {
private PaymentStrategyType paymentStrategyType;

public void setPaymentStrategyType(PaymentStrategyType type) {
paymentStrateqgyType = type;
}

PaymentStrategy getPaymentStrategy(PaymentStrateqgy
creditCard,
PaymentStrategy cheque,
PaymentStrategy online) {
switch (paymentStrategyType) {
case CREDIT CARD: return creditCard;

87

case CHEQUE: return cheque;
case ONLINE: return online;
default: throw new I1legalStateException();

}
}

In this case, any object returned by the producer method has already had its dependencies injected,
receives lifecycle callbacks and event notifications and may have interceptors.

But in this example, the returned objects are not contextual instances:

public class PaymentStrategyProducer implements Serializable {
private PaymentStrategyType paymentStrategyType;

public void setPaymentStrategyType(PaymentStrategyType type) {
paymentStrategyType = type;
}

PaymentStrategy getPaymentStrategy() {
switch (paymentStrategyType) {
case CREDIT_CARD: return new CreditCardPaymentStrategy();
case CHEQUE: return new ChequePaymentStrategy();
case ONLINE: return new OnlinePaymentStrategy();
default: throw new I1legalStateException();

In this case, any object returned by the producer method will not have any dependencies injected
by the container, receives no lifecycle callbacks or event notifications and does not have
interceptors or, in CDI Full, decorators.

7.2. Container invocations and interception

When the application invokes a method of a bean via a contextual reference to the bean, as defined
in Contextual reference for a bean, the invocation is treated as a business method invocation.

When the container invokes a method of a bean, the invocation may or may not be treated as a
business method invocation:

* Invocations of initializer methods by the container are not business method invocations.

* Invocations of producer, disposer and observer methods by the container are business method
invocations and are intercepted by method interceptors.

88

* Invocation of lifecycle callbacks by the container are not business method invocations, but are
intercepted by interceptors for lifecycle callbacks.

* Invocations of interceptor methods during method or lifecycle callback interception are not
business method invocations, and therefore no recursive interception occurs.

* Invocations of methods declared by java.lang.0bject are not business method invocations.

A method invocation passes through method interceptors if, and only if, it is a business method
invocation.

Otherwise, the invocation is treated as a normal Java method call and is not intercepted by the
container.

7.3. Lifecycle of contextual instances

The actual mechanics of bean creation and destruction varies according to what kind of bean is
being created or destroyed.

7.3.1. Lifecycle of managed beans

When the create() method of the Bean object that represents a managed bean is called, the
container obtains an instance of the bean, calling the bean constructor as defined by Injection using
the bean constructor, and performing dependency injection as defined in Injection of fields and
initializer methods.

When the destroy() method is called, the container destroys the instance, and any dependent
objects, as defined in Destruction of dependent objects.

7.3.2. Lifecycle of producer methods

When the create() method of a Bean object that represents a producer method is called, the
container must invoke the producer method as defined by Invocation of producer or disposer
methods. The return value of the producer method, after method interception completes, is the new
contextual instance to be returned by Bean.create().

If the producer method returns a null value and the producer method bean has the scope
@Dependent, the create() method returns a null value.

Otherwise, if the producer method returns a null value, and the scope of the producer method is
not @Dependent, the create() method throws an I1legalProductException.

When the destroy() method is called, and if there is a disposer method for this producer method,
the container must invoke the disposer method as defined by Invocation of producer or disposer
methods, passing the instance given to destroy() to the disposed parameter. Finally, the container
destroys dependent objects, as defined in Destruction of dependent objects.

7.3.3. Lifecycle of producer fields

When the create() method of a Bean object that represents a producer field is called, the container

89

must access the producer field as defined by Access to producer field values to obtain the current
value of the field. The value of the producer field is the new contextual instance to be returned by
Bean.create().

If the producer field contains a null value and the producer field bean has the scope @Dependent, the
create() method returns a null value.

Otherwise, if the producer field contains a null value, and the scope of the producer field is not
@Dependent, the create() method throws an I11legalProductException.

When the destroy() method is called, and if there is a disposer method for this producer field, the
container must invoke the disposer method as defined by Invocation of producer or disposer
methods, passing the instance given to destroy() to the disposed parameter.

90

Chapter 8. Interceptor bindings

Managed beans support interception. Interceptors are used to separate cross-cutting concerns from
business logic. The Jakarta Interceptors specification defines the basic programming model and
semantics, and how to associate interceptors with target classes. This specification defines an
extent to which CDI Lite supports Jakarta Interceptors specification, including extending it with
non-binding annotation values in interceptor resolution.

CDI Lite implementations are required to support following forms of interception:

* Interceptors declared on interceptor classes and associated with target class using interceptor
binding annotations

o @AroundInvoke, @PostConstruct, @PreDestroy and @AroundConstruct are all supported
o Enablement and ordering of interceptors using @Priority annotation

* @PostConstruct and @PreDestroy declared on target class (i.e. on a bean)
Using other forms of interception results in non-portable behavior.

CDI Full implementations are required to support all forms of interception, as described in
Interceptor bindings in CDI Full.

8.1. Interceptor binding types

This specification extends the Jakarta Interceptors specification and allows interceptor bindings to
be applied to CDI stereotypes.

8.1.1. Interceptor bindings for stereotypes

Interceptor bindings may be applied to a stereotype by annotating the stereotype annotation:

(TYPE)
(RUNTIME)
public Action {}

An interceptor binding declared by a stereotype is inherited by any bean that declares that
stereotype.

If a stereotype declares interceptor bindings, it must be defined as @Target(TYPE).

91

8.2. Declaring the interceptor bindings of an
interceptor

This specification extends the Jakarta Interceptors specification and defines how the container
must behave if a definition error is encountered.

If an interceptor declares any scope other than @Dependent, the container automatically detects the
problem and treats it as a definition error.

8.3. Binding an interceptor to a bean

This specification extends the Jakarta Interceptors specification and defines:

 additional restrictions about the type of bean to which an interceptor can be bound, and
* how the container must behave if a definition error is encountered, and

* how interceptors are bound using stereotypes.
Interceptor bindings may be used to associate interceptors with any managed bean.

The set of interceptor bindings for a method declared at class level includes those declared on
stereotypes. An interceptor binding declared on a bean class replaces an interceptor binding of the
same type declared by a stereotype that is applied to the bean class.

The set of interceptor bindings for a producer method is not used to associate interceptors with the
return value of the producer method.

If a managed bean has a class-level or method-level interceptor binding, the managed bean must be
a proxyable bean type, as defined in Unproxyable bean types.

8.4. Interceptor resolution

This specification extends the Jakarta Interceptors specification and defines the effect of applying
@Nonbinding to an interceptor binding member.

If any interceptor binding has a member annotated @jakarta.enterprise.util.Nonbinding, the
member is ignored when performing interceptor resolution, and the method does not need to have
the same annotation member value.

92

Chapter 9. Events

Beans may produce and consume events. This facility allows beans to interact in a completely
decoupled fashion, with no compile-time dependency between the interacting beans. Most
importantly, it allows stateful beans in one architectural tier of the application to synchronize their
internal state with state changes that occur in a different tier.

An event comprises:

* AJava object - the event object

* A set of instances of qualifier types - the event qualifiers

The event object acts as a payload, to propagate state from producer to consumer. The event
qualifiers act as topic selectors, allowing the consumer to narrow the set of events it observes.

An observer method acts as event consumer, observing events of a specific type - the observed event
type - with a specific set of qualifiers - the observed event qualifiers. An observer method will be
notified of an event if the event object is assignable to the observed event type, and if the set of
observed event qualifiers is a subset of all the event qualifiers of the event.

9.1. Event types and qualifier types

An event object is an instance of a concrete Java class with no unresolvable type variables. The
event types of the event include all superclasses and interfaces of the runtime class of the event
object.

An event type may not contain an unresolvable type variable. A wildcard type is not considered an
unresolvable type variable.

An event qualifier type is just an ordinary qualifier type as specified in Defining new qualifier
types, typically defined as @Target({METHOD, FIELD, PARAMETER, TYPE}) or @Target({FIELD,
PARAMETER}).

Every event has the qualifier @jakarta.enterprise.inject.Any, even if it does not explicitly declare
this qualifier.

Any Java type may be an observed event type.

9.2. Firing events

Beans fire events via an instance of the jakarta.enterprise.event.Event interface, which may be
injected:

Event<LoggedInEvent> loggedInEvent;

Any combination of qualifiers may be specified at the injection point:

93

Event<LoggedInEvent> adminLoggedInEvent;
Or the application may specify qualifiers dynamically:

Event<LoggedInEvent> loggedInEvent;

LoggedInEvent event = new LoggedInEvent(user);
if (user.isAdmin()) {
loggedInEvent.select(new AdminQualifier()).fire(event);

}
else {
loggedInEvent.fire(event);
loggedInEvent.fireAsync(event);
}

In this example, the event sometimes has the qualifier @Admin, depending upon the value of
user.isAdmin(). It is first fired synchronously with fire() then asynchronously with fireAsync().

9.2.1. Firing events synchronously

The method fire() accepts an event object:

public void login() {

loggedInEvent.fire(new LoggedInEvent(user));

Event fired with the fire() method is fired synchronously. All the resolved synchronous observers
(as defined in Observer resolution) are called in the thread in which fire() was called. A
synchronous observer notification blocks the calling thread until it completes.

9.2.2. Firing events asynchronously

Events may also be fired asynchronously using one of the methods fireAsync()

Event<LoggedInEvent> loggedInEvent;
public void login() {

loggedInEvent.fireAsync(new LoggedInEvent(user));

Event fired with the fireAsync() method is fired asynchronously. All the resolved asynchronous
observers (as defined in Observer resolution) are called in one or more different threads.

Method fireAsync() returns immediately.

94

9.2.3. The Event interface
The Event interface provides a method for firing events with a specified combination of type and

qualifiers:

public interface Event<T> {

public void fire(T event);

public <U extends T> CompletionStage<U> fireAsync(U event);

public <U extends T> CompletionStage<U> fireAsync(U event, NotificationOptions
options);

public Event<T> select(Annotation... qualifiers);

public <U extends T> Event<U> select(Class<U> subtype, Annotation... qualifiers);

public <U extends T> Event<U> select(TypelLiteral<U> subtype, Annotation...
qualifiers);

}

For an injected Event:

* the specified type is the type parameter specified at the injection point, and

* the specified qualifiers are the qualifiers specified at the injection point.

For example, this injected Event has specified type LoggedInEvent:

Event<LoggedInEvent> any;

The select() method returns a child Event for a given specified type and additional specified
qualifiers. If no specified type is given, the specified type is the same as the parent.

For example, this child Event has required type AdminLoggedInEvent and additional specified

qualifier @Admin:

Event<AdminLoggedInEvent> admin = any.select(
AdminLoggedInEvent.class,
new AdminQualifier());

If the specified type contains a type variable, an I1legalArgumentException is thrown.

The specified type must not be a wildcard type. If an injected Event has a specified type that is a
wildcard type, the container treats it as a definition error. If a programmatically obtained Event has
a specified type that is a wildcard type, non-portable behavior results.

If two instances of the same non repeating qualifier type are passed to select(), an
I1legalArgumentException is thrown.

95

If an instance of an annotation that is not a qualifier type is passed to select(), an
I1legalArgumentException is thrown.

The methods fire() and fireAsync() fire an event with the specified qualifiers and notify observers,
as defined by Observer notification. If the container is unable to resolve the parameterized type of
the event object, it uses the specified type to infer the parameterized type of the event types.

The method fireAsync() may be called with a NotificationOptions object to configure the observer
methods notification, e.g. to specify an Executor object to be used for asynchronous delivery. The
container is permitted to define other non-portable notification options.

The following elements are container specific:

* the default Executor used by the container when fireAsync() is called without specifying an
Executor,

* the CompletionStage returned by fireAsync methods, and

+ all dependent stages of this initial CompletionStage.

If the runtime type of the event object contains an unresolvable type variable, an
I1legalArgumentException is thrown.

If the runtime type of the event object is assignable to the type of a container lifecycle event, an
I1legalArgumentException is thrown.

9.2.4. The built-in Event

The container must provide a built-in bean with:

Event<X> in its set of bean types, for every Java type X that does not contain a type variable,
» every event qualifier type in its set of qualifier types,

* scope @Dependent,

* no bean name, and

* an implementation provided automatically by the container.

If an injection point of raw type Event is defined, the container automatically detects the problem
and treats it as a definition error.

9.3. Observer resolution

The process of matching an event to its observer methods is called observer resolution. The
container considers event type and qualifiers when resolving observers.

Observer resolution usually occurs at runtime.
An event is delivered to an observer method if:

* The observer method belongs to an enabled bean.

96

* An event type is assignable to the observed event type, taking type parameters into
consideration.

* The observer method has no event qualifiers or has a subset of the event qualifiers. An observer
method has an event qualifier if it has an observed event qualifier with (a) the same type and
(b) the same annotation member value for each member which is not annotated
@jakarta.enterprise.util.Nonbinding.

 Either the event is not a container lifecycle event, as defined in Container lifecycle events, or the
observer method belongs to an extension.

* The event is fired synchronously and the observer is a synchronous observer as defined in
Declaring an observer method.

* The event is fired asynchronously and the observer is an asynchronous observer as defined in

Declaring an observer method.

If the runtime type of the event object contains an unresolvable type variable, the container must
throw an IllegalArgumentException.

9.3.1. Assignability of type variables, raw and parameterized types

An event type is considered assignable to an observed event type that is a type variable if the event
type is assignable to the upper bound of the type variable, if any.

A raw event type is considered assignable to a parameterized observed event type if the raw types
are identical and all type parameters of the observed event type are either unbounded type
variables or java.lang.0Object.

A parameterized event type is considered assignable to a raw observed event type if the raw types
are identical.

A parameterized event type is considered assignable to a parameterized observed event type if they
have identical raw type and for each parameter:

» the observed event type parameter is an actual type with identical raw type to the event type
parameter, and, if the type is parameterized, the event type parameter is assignable to the
observed event type parameter according to these rules, or

* the observed event type parameter is a wildcard and the event type parameter is assignable to
the upper bound, if any, of the wildcard and assignable from the lower bound, if any, of the
wildcard, or

* the observed event type parameter is a type variable and the event type parameter is assignable
to the upper bound, if any, of the type variable.

9.3.2. Event qualifier types with members

As usual, the qualifier type may have annotation members:

(PARAMETER)
(RUNTIME)

97

public Role {
String value();
+

Consider the following event:

Event<LoggedInEvent> loggedInEvent;

public void login() {

final User user = ...;

loggedInEvent.select(new RoleQualifier() { public String value() { return user
.getRole(); } }).fire(new LoggedInEvent(user));
}

Where RoleQualifier is an implementation of the qualifier type Role:

public abstract class RoleQualifier
extends AnnotationlLiteral<Role>
implements Role {}

Then the following observer method will always be notified of the event:
public void afterLogin(LoggedInEvent event) { ... }

Whereas this observer method may or may not be notified, depending upon the value of
user.getRole():

public void afterAdminLogin(("admin") LoggedInEvent event) { ... }

As usual, the container uses equals() to compare event qualifier type member values.

9.3.3. Multiple event qualifiers

An event parameter may have multiple qualifiers.

public void afterDocumentUpdatedByAdmin(Document doc) { .
!

Then this observer method will be notified if the set of observer qualifiers is a subset of the fired
event’s qualifiers or an empty set:

Event<Document> documentEvent;

documentEvent.select(new UpdatedQualifier(), new ByAdminQualifier(), new

98

ClarificationQualifier()).fire(document);

In the above example the event is fired with @ByAdmin, @Updated, and @Clarification qualifiers. The
observer qualifiers are @Updated and @ByAdmin. Observer qualifiers therefore form a subset of event
qualifiers and the observer will be notified.

Other, less specific, observers will also be notified of this event:

public void afterDocumentUpdated(Document doc) { ... }

public void afterDocumentEvent(Document doc) { ... }

On the other hand, following observer will not be notified as slightly different behaviour applies to
observers with @Default qualifier:

public void afterDocumentDefaultEvent(Document doc) { ... }
Such observer will only be notified for events having either no qualifiers or only @Default qualifier:

Event<Document> documentEvent;
Event<Document> documentDefaultEvent;

documentEvent.fire(document);
documentDefaultEvent.fire(document);

9.4. Observer methods

An observer method allows the application to receive and respond to event notifications.

An observer method is a non-abstract method of a managed bean class. An observer method may
be either static or non-static.

There may be arbitrarily many observer methods with the same event parameter type and
qualifiers.

A bean may declare multiple observer methods.

9.4.1. Event parameter of an observer method

Each observer method must have exactly one event parameter, of the same type as the event type it
observes. When searching for observer methods for an event, the container considers the type and
qualifiers of the event parameter.

If the event parameter does not explicitly declare any qualifier, the observer method observes
events with no qualifier.

99

The event parameter type may contain a type variable or wildcard.

The event parameter may be an array type whose component type contains a type variable or a
wildcard.

Modifications made to the event parameter in an observer method are propagated to following
observers. The container is not required to guarantee a consistent state for an event parameter
modified by asynchronous observers.

9.4.2. Declaring an observer method

An observer method may be declared by annotating a parameter
@jakarta.enterprise.event.Observes or @jakarta.enterprise.event.0bservesAsync of a default-access,
public, protected or private method. That parameter is the event parameter. The declared type of
the parameter is the observed event type.

If @0bserves is used the observer method is a synchronous observer method.

If @0bservesAsync is used the observer method is an asynchronous observer method.

public void afterLogin(LoggedInEvent event) { ... }

public void asyncAfterLogin(LoggedInEvent event) { ... }

If a method has more than one parameter annotated @0bserves or @0bservesAsync, the container
automatically detects the problem and treats it as a definition error.

If a method has a parameter annotated @0bserves and @0bservesAsync, the container automatically
detects the problem and treats it as a definition error.

Observed event qualifiers may be declared by annotating the event parameter:
public void afterLogin(LoggedInEvent event) { ... }

If an observer method is annotated @Produces or @Inject or has a parameter annotated @Disposes,
the container automatically detects the problem and treats it as a definition error.

Interceptors may not declare observer methods. If an interceptor has a method with a parameter
annotated @0bserves or @0bservesAsync, the container automatically detects the problem and treats
it as a definition error.

In addition to the event parameter, observer methods may declare additional parameters, which
may declare qualifiers. These additional parameters are injection points.

public void afterLogin(LoggedInEvent event, User user, Logger log)

{ ...}

100

9.4.3. The EventMetadata interface

The interface jakarta.enterprise.inject.spi.EventMetadata provides access to metadata about an
observed event.

public interface EventMetadata {
public Set<Annotation> getQualifiers();
public InjectionPoint getInjectionPoint();
public Type getType();

» getQualifiers() returns the set of qualifiers with which the event was fired.

* getInjectionPoint() returns the InjectionPoint from which this event payload was fired, or null
if it was fired from BeanContainer.getEvent().

* getType() returns the type representing runtime class of the event object with type variables
resolved.

The container must provide a bean with scope @Dependent, bean type EventMetadata and qualifier
@Default, allowing observer methods to obtain information about the events they observe.

If an injection point of type EventMetadata and qualifier @Default which is not a parameter of an
observer method exists, the container automatically detects the problem and treats it as a definition
error.

public void afterLogin(LoggedInEvent event, EventMetadata metadata) { ... }

9.4.4. Conditional observer methods

A conditional observer method is an observer method which is notified of an event only if an
instance of the bean that defines the observer method already exists in the current context.

A conditional observer method may be declared by specifying notifyObserver=IF_EXISTS.

public void refreshOnDocumentUpdate((notifyObserver=IF_EXISTS)
Document doc) { ... }

public void asyncRefreshOnDocumentUpdate((notifyObserver=IF_EXISTS)
Document doc) { ... }

Beans with scope @Dependent may not have conditional observer methods. If a bean with scope
@Dependent has an observer method declared notifyObserver=IF_EXISTS, the container automatically
detects the problem and treats it as a definition error.

The enumeration jakarta.enterprise.event.Reception identifies the possible values of
notifyObserver:

101

public enum Reception { IF_EXISTS, ALWAYS }

9.4.5. Transactional observer methods

Transactional observer methods are observer methods which receive event notifications during the
before or after completion phase of the transaction in which the event was fired. If no transaction
is in progress when the event is fired, they are notified at the same time as other observers.

If the transaction is in progress, but jakarta.transaction.Synchronization callback cannot be
registered due to the transaction being already marked for rollback or in state where
jakarta.transaction.Synchronization callbacks cannot be registered, the before completion, after
completion and after failure observer methods are notified at the same time as other observers, but
after_success observer methods get skipped.

* A before completion observer method is called during the before completion phase of the
transaction.

* An after completion observer method is called during the after completion phase of the
transaction.

* An after success observer method is called during the after completion phase of the transaction,
only when the transaction completes successfully.

* An after failure observer method is called during the after completion phase of the transaction,
only when the transaction fails.

The enumeration jakarta.enterprise.event.TransactionPhase identifies the kind of transactional
observer method:

public enum TransactionPhase {
IN_PROGRESS,
BEFORE_COMPLETION,
AFTER_COMPLETION,
AFTER_FAILURE,
AFTER_SUCCESS

A transactional observer method may be declared by specifying any value other than IN_PROGRESS
for during:

void onDocumentUpdate((during=AFTER_SUCCESS) Document doc) { ... }

Asynchronous observer cannot be declared transactional.

9.5. Observer notification

When an event is fired by the application, the container must:

102

* determine the observer methods for that event according to the rules of observer resolution
defined by Observer resolution, then,

» for each observer method, either invoke the observer method immediately, or register the
observer method for later invocation during the transaction completion phase, using a JTA
Synchronization.

* honor the priority of observer methods as defined in Observer ordering.
The container calls observer methods as defined in Invocation of observer methods.

» If the observer method is a transactional observer method and there is currently a JTA
transaction in progress, the container calls the observer method during the appropriate
transaction completion phase.

« If there is no context active for the scope to which the bean declaring the observer method
belongs, then the observer method should not be called.

* Otherwise, the container calls the observer immediately.

Any observer method called before completion of a transaction may call setRollbackOnly() to force
a transaction rollback. An observer method may not directly initiate, commit or rollback JTA
transactions.

Observer methods may throw exceptions:

« If the observer method is a transactional observer method, any exception is caught and logged
by the container.

* If the observer method is asynchronous, the exception aborts processing of the observer but not
of the event. Exception management during an asynchronous event is defined in Handling
exceptions thrown during an asynchronous event.

* Otherwise, the exception aborts processing of the event. No other observer methods of that
event will be called. The Event.fire() method rethrows the exception. If the exception is a
checked exception, it is wrapped and rethrown as an (unchecked) ObserverException.

9.5.1. Handling exceptions thrown during an asynchronous event

If an event is asynchronous, and an exception is thrown by one or more of its notified observers,
the CompletionStage returned by fireAsync will complete exceptionally with
java.util.concurrent.CompletionException. CompletionException contains all exceptions thrown by
observers as suppressed exceptions. They can be accessed as an array of Throwable with the
getSuppressed method.

It can be handled with one of the CompletionStage methods related to exceptions:

myEvent.fireAsync(anEventObject)
.handle((ok, ex) -> {
if (ok !'= null) {
return ok;
} else {
for (Throwable t : ex.getSuppressed()) {

103

1

If no exception is thrown by observers then the resulting CompletionStage is completed normally
with the event object.

9.5.2. Observer ordering

Before the actual observer notification, the container determines an order in which the observer
methods for a certain event are invoked. The priority of an observer method may be declared by
annotating the event parameter with @Priority annotation. If a @Priority annotation is declared on
an event parameter of an asynchronous observer method, non-portable behavior results. If no
@Priority annotation is specified, the default priority
jakarta.interceptor.Interceptor.Priority.APPLICATION + 500 is assumed. Observers with smaller
priority values are called first.

void afterLogin((jakarta.interceptor.Interceptor.Priority
.APPLICATION) LoggedInEvent event) { ... }

The order of more than one observer with the same priority is undefined and the observer methods
are notified therefore in a non predictable order.

9.5.3. Observer method invocation context

The transaction context and lifecycle contexts active when an observer method is invoked depend
upon what kind of observer method it is.

 If the observer method is asynchronous, it is called in a new lifecycle contexts and a new
transaction context. As specified in Context management for built-in scopes, contexts associated
with built-in normal scope don’t propagate across asynchronous observers.

* If the observer method is a before completion transactional observer method, it is called within
the context of the transaction that is about to complete and with the same lifecycle contexts.

* Otherwise, if the observer method is any other kind of transactional observer method, it is
called in an unspecified transaction context, but with the same lifecycle contexts as the
transaction that just completed.

* Otherwise, the observer method is called in the same transaction context and lifecycle contexts
as the invocation of Event.fire().

9.6. Observable container lifecycle events

9.6.1. Startup event

Implementations are required to synchronously fire an event with payload
jakarta.enterprise.event.Startup and qualifier jakarta.enterprise.inject.Any during application

104

initialization. This event is fired after the event with qualifier @Initialized(ApplicationScope.class)
but before processing requests.

This event can be observed by integrators and libraries to perform any kind of early initialization
as well as by users as a reliable entry point for when the CDI container is ready.

Observer methods for this event are encouraged to specify @Priority to determine ordering with
lower priority numbers being recommended for platform/framework/library integration and
higher numbers for user applications.

Applications must never manually fire any events with payload type
jakarta.enterprise.event.Startup.

9.6.2. Shutdown event

Implementations are required to synchronously fire an event with payload
jakarta.enterprise.event.Shutdown and qualifier jakarta.enterprise.inject.Any during application
shutdown. This event is fired during CDI container shutdown but not later than the event with
qualifier @BeforeDestroyed(ApplicationScoped.class).

This event can be observed by integrators and libraries to perform any kind of pre-shutdown
operation as well as by users as a reliable entry point for when the CDI container is about to shut
down.

Observer methods for this event are encouraged to specify @Priority to determine ordering with
lower priority numbers being recommended for user applications and higher numbers for
platform/framework/library integration.

Applications must never manually fire any events with payload @ type
jakarta.enterprise.event.Shutdown.

105

Chapter 10. Method invokers

CDI-based frameworks often need to invoke application methods declared on managed beans.
Frameworks cannot invoke application methods directly, because they are not compiled against the
application code. However, during application deployment, frameworks may observe application
methods through CDI extensions and build an Invoker for each relevant method. The invokers can
then be used at application runtime to invoke the methods indirectly.

Method invokers are not supposed to be used by application code, as applications may invoke their
own methods directly.

10.1. Building an Invoker

The CDI container allows building an Invoker for a method of an enabled managed bean. The
method for which the invoker is built is called the target method of the invoker, and the managed
bean is called the target bean of the invoker.

Invalid target methods are:

* private methods,

* constructors,

* methods declared on the java.lang.0bject class, except for the toString() method,

* methods that are not declared on the bean class of the target bean or inherited from its
supertypes.

Attempting to build an invoker for an invalid target method leads to a deployment problem.

Attempting to build an invoker for a non-static target method declared on a type that is not present
in the set of bean types of the target bean leads to non-portable behavior. When the target bean is
normal scoped, attempting to build an invoker for a non-static target method declared on an
unproxyable bean type of the target bean leads to non-portable behavior.

When the target bean is not a managed bean, attempting to build an invoker leads to a deployment
problem. When the target bean is an interceptor, attempting to build an invoker leads to a
deployment problem.

Multiple managed beans may inherit a method from a common supertype. In that case, an invoker
must be built for each target bean individually. An invoker built for one target bean may not be
used to invoke the target method on an instance of another target bean.

The only way to build an invoker is using the InvokerBuilder. An InvokerBuilder can only be
obtained in CDI portable extensions and build compatible extensions. See Using InvokerBuilder for
more information.

10.2. Using an Invoker

The Invoker interface contains a single method:

106

public interface Invoker<T, R> {
R invoke(T instance, Object[] arqguments) throws Exception;

Calling invoke() invokes the target method on given instance of the target bean, passing given
arguments, and propagates back the return value or thrown exception. The instance and arguments
may be contextual or non-contextual objects.

A single invoker instance may be used to perform multiple invocations of the target method,
possibly on different instances of the target bean, possibly with different arguments. Invoker
implementations must be thread-safe. Whether concurrent invocations of the target method are
safe depends on the implementation of the target bean and is not generally guaranteed.

Whenever a direct invocation of a method on an object is a business method invocation, an indirect
invocation of that method on that object through an invoker is also a business method invocation.

10.2.1. Behavior of invoke()

If the target method is static, the instance is ignored; by convention, it should be null. If the target
method is not static and instance is null, a RuntimeException is thrown. If the target method is not
static and the instance is not permissible for the target method, a RuntimeException is thrown.

The instance is permissible for the target method when:

* the instance is a contextual reference for the target bean and the bean type that declares the
target method, or

 the instance is a contextual reference for the target bean (regardless of the bean type) and the
target method is declared on an interface that is present in the set of bean types of the target
bean (see Typecasting between bean types), or

 the instance is a non-contextual object and the class of the instance declares the target method
or inherits it from a supertype, or

* in other, non-portable (implementation defined) cases.

Correspondence between given arguments and declared parameters of the target method is
positional: the Nth element of the arguments array is passed as the Nth argument to the target
method. If the target method is a variable arity method, the last element of the arguments array
corresponds to the variable arity parameter (and therefore must be an array). When passing an
argument to the method, the applicable method invocation conversion is performed.

If the target method declares no parameter, arqguments are ignored. If the target method declares
any parameter and arguments is null, RuntimeException is thrown. If the arquments array has fewer
elements than the number of parameters of the target method, RuntimeException is thrown. If the
arquments array has more elements than the number of parameters of the target method, the excess
elements are ignored. If a method invocation conversion does not exist from the class of some of
the arguments (or from the null type if the argument is null) to the declared type of the
corresponding parameter of the target method, RuntimeException is thrown.

107

The type checking and conversion rules are aligned with pre-existing mechanisms
NOTE for indirect method invocations, the Java reflection API and the method handles
APIL.

When the declared type of a parameter of the target method is not a reifiable type, callers of
Invoker.invoke() must ensure that the corresponding argument is constructed appropriately.
Otherwise, runtime failures are likely to occur.

If the target method returns normally, its return value is returned (after boxing conversion if the
target method’s return type is a primitive type), unless the target method is declared void, in which
case null is returned. If the target method throws an exception, it is rethrown directly.

10.2.2. Example

To illustrate how method invokers work, let’s take a look at an example. Say that the following bean
exists in an application and has a method that you, the framework author, want to invoke
indirectly:

public class MyService {
public String hello(String name) {

return "Hello " + name + ;

}

In a CDI extension, you obtain an InvokerBuilder for the hello() method and use it to build an
invoker. In a portable extension (see Using InvokerBuilder in CDI Full), this results in an invoker
which should be stored for later usage:

InvokerBuilder<Invoker<MyService, String>> builder = ...;
Invoker<MyService, String> invoker = builder.build();

In a build compatible extension (see Using InvokerBuilder), this results in an opaque token that
materializes as an Invoker at application runtime:

InvokerBuilder<InvokerInfo> builder = ...;
InvokerInfo invoker = builder.build();

To call the hello() method through this invoker, assuming that myService is a contextual reference
for the bean, call:

invoker.invoke(myService, new Object[] {"wor1ld"})

The return value is "Hello world!".

108

Internally, the container will create an implementation of the invoker, equivalent to the following
class:

public class TheInvoker implements Invoker<MyService, String> {
public String invoke(MyService instance, Object[] arquments) {
return instance.hello((String) arquments[0]);

}

10.3. Using InvokerBuilder

InvokerBuilder can be obtained in build compatible extensions from
InvokerFactory.createInvoker():

public interface InvokerFactory {
InvokerBuilder<InvokerInfo> createInvoker(BeanInfo bean, MethodInfo method);

}

An InvokerFactory may be declared as a parameter of @Registration extension methods.

The target bean of the created invoker is the bean represented by the BeanInfo object passed to
createInvoker(). The target method of the created invoker is the method represented by the
MethodInfo object passed to createlnvoker().

public interface InvokerBuilder<T> {

T build();

Calling InvokerBuilder.build() produces an opaque token (InvokerInfo) that can be passed as a
parameter to a SyntheticBeanBuilder or SyntheticObserverBuilder and materializes as an Invoker at
application runtime.

10.3.1. Configuring invoker lookups

The InvokerBuilder allows configuring that the instance or any of the arguments passed to
Invoker.invoke() should be ignored and a value should be looked up from the CDI container
instead.

public interface InvokerBuilder<T> {
InvokerBuilder<T> withInstancelookup();
InvokerBuilder<T> withArgumentLookup(int position);

109

When withInstancelLookup() is called on an invoker builder and the target method is not static, the
invoke() method of the built invoker shall ignore the instance argument and instead obtain and use
a contextual reference for the target bean and the bean type that declares the target method.
Calling withInstancelLookup() on an invoker builder for a static target method has no effect.

When withArgumentLookup() is called on an invoker builder, the invoke() method of the built invoker
shall ignore the given element of the arguments array and instead:

1. identify a bean according to the rules of typesafe resolution, as defined in Performing typesafe
resolution, where the required type is the declared type of the corresponding parameter of the
target method and the required qualifiers are all qualifiers present on the parameter, resolving
ambiguities according to Unsatisfied and ambiguous dependencies;

2. obtain and use a contextual reference for the identified bean and the declared type of the
parameter.

Calling withArqgumentLookup() with position less than 0 or greater than or equal to the number of
parameters of the target method leads to an I1legalArgumentException.

Configuring a lookup using withInstancelLookup() or withArgumentLookup() does not relax the
requirements defined in Behavior of invoke(). Notably, the arguments array must still have an
element for each argument, regardless of whether a lookup was configured for it. This means that
for a target method with N parameters, the arguments array must always have at least N elements.

In the following paragraphs, the beans whose instances shall be obtained by Invoker.invoke() as a
result of calling withInstancelLookup() and withArgumentLookup() are called looked up beans.

During deployment validation, implementations are required to identify all looked up beans for all
built invokers, as described above. It is a deployment problem if an attempt to identify a looked up
bean results in an unsatisfied dependency or an ambiguous dependency that is not resolvable.
Implementations are permitted to remember the identified beans and not repeat the resolution
process for each invocation of Invoker.invoke().

All instances of @Dependent looked up beans obtained during Invoker.invoke() are destroyed before
the invoke() method returns or throws. The order in which the instances of @Dependent looked up
beans are destroyed is not specified.

This specification recognizes the existence of asynchronous methods, where the action represented
by the method does not always finish when the method returns; the completion of the action is
asynchronous to the method call. For target methods that are considered asynchronous by the CDI
container, the requirement to destroy instances of @Dependent looked up beans is relaxed: the
instances of @Dependent looked up beans need not be destroyed before Invoker.invoke() returns. It is
recommended that the instances of @Dependent looked up beans are destroyed after the
asynchronous action completes and before the completion is propagated to the caller of
Invoker.invoke(); if an asynchronous target method completes synchronously or throws
synchronously, it is recommended that the instances of @Dependent looked up beans are destroyed
before invoke() returns or rethrows the exception.

The rules for recognizing asynchronous methods are not specified. Applications

CAUTION which use invokers to call asynchronous methods are therefore not portable.

110

Future versions of this specification may define an API to give greater control
over the invocation of asynchronous methods.

Implementations that support asynchronous methods are encouraged to
document the rules they follow.

The order in which instances of looked up beans are obtained during Invoker.invoke() in not
specified.

If an exception is thrown when creating an instance of a looked up bean during Invoker.invoke(),
the exception is rethrown.

Destroying an instance is not permitted to throw an exception. See The Contextual

NOTE . . .
interface for more information.

111

Chapter 11. Programmatic access to
container

The BeanContainer and BeanManager interfaces allow programmatic access to the CDI container.

BeanContainer provides features that can be implemented in more restricted environments. It is
available in CDI Lite environment, and therefore also in CDI Full environment.

BeanManager extends BeanContainer and provides additional features. It is only available in CDI Full
environment.

In CDI Lite environment, obtaining a BeanManager is possible, but only methods inherited from
BeanContainer may be invoked. Invoking BeanManager methods that are not inherited from
BeanContainer results in non-portable behavior.

11.1. The BeanContainer object

The interface jakarta.enterprise.inject.spi.BeanContainer provides operations for obtaining
contextual references for beans, along with many other operations of use to applications.

The container provides a built-in bean with bean type BeanContainer, scope @Dependent and qualifier
@Default. Thus, any bean may obtain an instance of BeanContainer by injecting it:

BeanContainer container;

The operations of BeanContainer may be called at any time during the execution of the application.

11.1.1. Obtaining a reference to the CDI container

Application objects sometimes interact directly with the container via programmatic API call. The
abstract class jakarta.enterprise.inject.spi.CDI provides access to the BeanContainer as well
providing lookup of bean instances.

public abstract class CDI<T> implements Instance<T> {
public static CDI<Object> current() { ... }
public static void setCDIProvider(CDIProvider provider);
public abstract BeanContainer getBeanContainer();
public abstract BeanManager getBeanManager();

An object may obtain a reference to the current container by calling CDI.current().
(DI.getBeanContainer(), as well as other methods on (DI, may be called after the application
initialization is completed until the application shutdown starts. If methods on (DI are called at any
other time, non-portable behavior results.

(DI implements jakarta.enterprise.inject.Instance and therefore might be used to perform

112

programmatic lookup as defined in The Instance interface. If no qualifier is passed to CDI.select()
method, the @Default qualifier is assumed.

When CDI.current() is called, getCDI() method is called on
jakarta.enterprise.inject.spi.CDIProvider.

The CDIProvider to use may be set by the application or container using the setCDIProvider()
method. If the setCDIProvider() has not been called, the service provider with highest priority of
the service jakarta.enterprise.inject.spi.CDIProvider declared in META-INF/services is used. The
order of more than one CDIProvider with the same priority is undefined. If no provider is available
an IllegalStateException is thrown.

public interface CDIProvider extends Prioritized {
(DI<Object> get(CDI();
default int getPriority();

* getPriority() method is inherited from Prioritized interface and returns the priority for the
(DIProvider. If this method is not implemented the default priority 0 is assumed.

11.1.2. Obtaining a contextual reference for a bean

The method BeanContainer.getReference() returns a contextual reference for a given bean and bean
type, as defined in Contextual reference for a bean.

public Object getReference(Bean<?> bean, Type beanType, CreationalContext<?> ctx);

The first parameter is the Bean object representing the bean. The second parameter represents a
bean type that must be implemented by any client proxy that is returned. The third parameter is an
instance of CreationalContext that may be used to destroy any object with scope @Dependent that is
created.

If the given type is not a bean type of the given bean, an I11egalArgumentException is thrown.

11.1.3. Obtaining a CreationalContext

An instance of CreationalContext for a certain instance of Contextual may be obtained by calling
BeanContainer.createCreationalContext().

public <T> CreationalContext<T> createCreationalContext(Contextual<T> contextual);

An instance of CreationalContext for a non-contextual object may be obtained by passing a null
value to createCreationalContext().

113

11.1.4. Obtaining a Bean by type

The method BeanContainer.getBeans() returns the set of beans which have the given required type
and qualifiers and are available for injection in the module or library containing the class into
which the BeanContainer was injected, according to the rules for candidates of typesafe resolution
defined in Performing typesafe resolution.

public Set<Bean<?>> getBeans(Type beanType, Annotation... qualifiers);

The first parameter is a required bean type. The remaining parameters are required qualifiers.
If no qualifiers are passed to getBeans(), the default qualifier @Default is assumed.
If the given type represents a type variable, an I1legalArgumentException is thrown.

If two instances of the same non repeating qualifier type are given, an I1legalArgumentException is
thrown.

If an instance of an annotation that is not a qualifier type is given, an I1legalArqumentException is
thrown.

11.1.5. Obtaining a Bean by name

The method BeanContainer.getBeans() which accepts a string returns the set of beans which have
the given bean name and are available for injection in the module or library containing the class
into which the BeanContainer was injected, according to the rules of name resolution defined in
Name resolution.

public Set<Bean<?>> getBeans(String name);

The parameter is a bean name.

11.1.6. Resolving an ambiguous dependency

The method BeanContainer.resolve() applies the ambiguous dependency resolution rules defined in
Unsatisfied and ambiguous dependencies to a set of Bean s.

public <X> Bean<? extends X> resolve(Set<Bean<? extends X>> beans);

If the ambiguous dependency resolution rules fail (as defined in Unsatisfied and ambiguous
dependencies, the container must throw an AmbiguousResolutionException.

BeanContainer.resolve() must return null if:

* null is passed to resolve(), or

* no beans are passed to resolve().

114

11.1.7. Firing an event
The method BeanContainer.getEvent() returns an instance of Event with specified type
java.lang.0Object and specified qualifier @Default.

Event<Object> getEvent();

The returned instance can be used like a standard Event as described in Events.

11.1.8. Observer method resolution
The method BeanContainer.resolveObserverMethods() resolves observer methods for an event

according to the rules of observer resolution defined in Observer resolution.

public <T> Set<ObserverMethod<? super T>> resolveObserverMethods(T event, Annotation.
.. qualifiers);

The first parameter of resolveObserverMethods() is the event object. The remaining parameters are
event qualifiers.

If the runtime type of the event object contains a type variable, an IllegalArgumentException is
thrown.

If two instances of the same non repeating qualifier type are given, an I1legalArgumentException is
thrown.

If an instance of an annotation that is not a qualifier type is given, an I1legalArgumentException is
thrown.

11.1.9. Interceptor resolution

The method BeanContainer.resolvelnterceptors() returns the ordered list of interceptors for a set of
interceptor bindings and a type of interception and which are enabled in the module or library
containing the class into which the BeanContainer was injected, as defined in Interceptor resolution.

List<Interceptor<?>> resolvelnterceptors(InterceptionType type,
Annotation... interceptorBindings);

If two instances of the same non repeating interceptor binding type are given, an
I1legalArgumentException is thrown.

If no interceptor binding type instance is given, an I1legalArgumentException is thrown.

If an instance of an annotation that is not an interceptor binding type is given, an
I1legalArgumentException is thrown.

115

11.1.10. Determining if an annotation is a qualifier type, scope type,
stereotype or interceptor binding type

An application may test an annotation to determine if it is a qualifier type, scope type, stereotype or
interceptor binding type, or determine if a scope type is a normal scope.

public boolean isScope((Class<? extends Annotation> annotationType);
public boolean isNormalScope(Class<? extends Annotation> scopeType);

public boolean isQualifier(Class<? extends Annotation> annotationType);
public boolean isInterceptorBinding(Class<? extends Annotation> annotationType);
public boolean isStereotype(Class<? extends Annotation> annotationType);

11.1.11. Obtaining the active Context for a scope

The method BeanContainer.getContext() retrieves an active context object associated with the given
scope, as defined in The active context object for a scope.

public Context getContext(Class<? extends Annotation> scopeType);

11.1.12. Obtaining Contexts for a scope

The method BeanContainer.getContexts() retrieves all context objects, active and inactive,
associated with the given scope, as defined in Scopes and contexts.

public Collection<Context> getContexts(Class<? extends Annotation> scopeType);

11.1.13. Obtain an Instance

The method BeanContainer.createInstance() returns an Instance<Object> to request bean instances
programmatically as described in The Instance interface.

The returned Instance object can only access instances of beans that are available for injection in
the module or library containing the class into which the BeanContainer was injected, according to
the rules defined in Typesafe resolution.

Instance<Object> createlInstance();

Instances of dependent scoped beans obtained with this Instance object must be explicitly released
by calling Instance.destroy() method.

If no qualifier is passed to Instance.select() method, the @Default qualifier is assumed.

116

11.1.14. Assignability of beans and events

The methods BeanContainer.isMatchingBean() and isMatchingEvent() provide access to assignability
rules defined in Typesafe resolution and Observer resolution.

public boolean isMatchingBean(Set<Type> beanTypes, Set<Annotation> beanQualifiers,
Type requiredType, Set<Annotation> requiredQualifiers);

public boolean isMatchingEvent(Type eventType, Set<Annotation> eventQualifiers, Type

observedEventType, Set<Annotation> observedEventQualifiers);

11.1.15. Unwrapping a client proxy

Normal scoped beans use client proxies and the method BeanContainer.unwrapClientProxy()
unwraps the proxy and returns the underlying contextual instance.

While this is wuseful for introspection of the contextual instance by
NOTE frameworks/libraries, it should not be a common pattern to unwrap proxies and
invoke business methods directly on contextual instances!

public <T> T unwrapClientProxy(T reference);

117

Chapter 12. Build compatible extensions

A build compatible extension may integrate with the container during deployment time, as defined
in Application initialization lifecycle.

12.1. The BuildCompatibleExtension interface

A build compatible extension is a service provider of the
jakarta.enterprise.inject.build.compatible.spi.BuildCompatibleExtension interface, declared in
META-INF/services.

public interface BuildCompatibleExtension {}

Build compatible extensions can define arbitrary public, non-static, void-returning methods
without type parameters, annotated with one of the extension annotations. Such methods are called
extension methods.

Extension annotations correspond to extension execution phases:

* @Discovery

* @Enhancement

* @Registration

e @Synthesis

» @Validation
Extension methods may declare arbitrary number of parameters. In each execution phase,
different types of parameters may be declared. All the parameters will be provided by the container

when the extension method is invoked. If an extension method declares a parameter of a type
unsupported in the execution phase, the container treats it as a deployment problem.

For each build compatible extension, the container creates a single instance. All extension methods
are invoked on the same instance.

The invocation order for extension methods may be controlled using the @Priority annotation. If an
extension method does not have the @Priority annotation, the default priority
jakarta.interceptor.Interceptor.Priority.APPLICATION + 500 is assumed. If two extension methods
have equal priority, the ordering between them is undefined. Note that priority only affects order
of extension methods in a single phase.

If an extension method throws an exception, the container treats it as a deployment problem.

At deployment time, CDI container does not have to be running, so calling (DI.current() from an
extension method, or attempting to access a running CDI container in any other way, results in non-
portable behavior.

118

12.2. The @Discovery phase

In this phase, build compatible extensions may register additional classes to be scanned during type
discovery, and register custom CDI meta-annotations.

Extension methods annotated @Discovery may declare parameters of the following types:

e ScannedClasses
e MetaAnnotations

* Messages (see The @Validation phase)

public interface ScannedClasses {
void add(String className);

}

public interface MetaAnnotations {
ClassConfig addQualifier(Class<? extends Annotation> annotation);
ClassConfig addInterceptorBinding(Class<? extends Annotation> annotation);
ClassConfig addStereotype(Class<? extends Annotation> annotation);

void addContext(Class<? extends Annotation> scopeAnnotation, Class<? extends
AlterableContext> context(Class);

void addContext(Class<? extends Annotation> scopeAnnotation, boolean isNormal,
Class<? extends AlterableContext> contextClass);

}

If the addQualifier, addInterceptorBinding or addStereotype method is called, the return value allows
configuring meta-annotations on the qualifier, interceptor binding or stereotype annotation and its
members.

12.3. The @Enhancement phase

In this phase, build compatible extensions may alter annotations on discovered types.

Extension methods annotated @Enhancement must declare exactly one parameter of one of the
following types:

* (lassConfig or ClassInfo
* MethodConfig or MethodInfo
* FieldConfig or FieldInfo

public interface ClassConfig extends DeclarationConfig {
ClassInfo info();

ClassConfig addAnnotation(Class<? extends Annotation> annotationType);

119

ClassConfig addAnnotation(AnnotationInfo annotation);

ClassConfig addAnnotation(Annotation annotation);

(lassConfig removeAnnotation(Predicate<AnnotationInfo> predicate);
ClassConfig removeAllAnnotations();

Collection<MethodConfig> constructors();
Collection<MethodConfig> methods();
Collection<FieldConfig> fields();

¥

public interface ClassInfo extends DeclarationInfo {
String name();
String simpleName();
PackageInfo packageInfo();
List<TypeVariable> typeParameters();

Type superClass();

ClassInfo super(ClassDeclaration();

List<Type> superInterfaces();

List<ClassInfo> superInterfacesDeclarations();

boolean isPlainClass();
boolean isInterface();
boolean isEnum();
boolean isAnnotation();
boolean isRecord();
boolean isAbstract();
boolean isFinal();

int modifiers();

Collection<MethodInfo> constructors();
Collection<MethodInfo> methods();
Collection<FieldInfo> fields();
Collection<RecordComponentInfo> recordComponents();

When an extension method declares a parameter of type ClassConfig or ClassInfo, it will be called
for each discovered class matching the criteria defined on the @Enhancement annotation. It is possible
to navigate to constructors, methods and fields from a (lassConfig and configure them.

public interface MethodConfig extends DeclarationConfig {
MethodInfo info();

MethodConfig addAnnotation(Class<? extends Annotation> annotationType);
MethodConfig addAnnotation(AnnotationInfo annotation);

MethodConfig addAnnotation(Annotation annotation);

MethodConfig removeAnnotation(Predicate<AnnotationInfo> predicate);
MethodConfig removeAllAnnotations();

List<ParameterConfig> parameters();

120

}

public interface ParameterConfig extends DeclarationConfig {
ParameterInfo info();

ParameterConfig addAnnotation(Class<? extends Annotation> annotationType);
ParameterConfig addAnnotation(AnnotationInfo annotation);

ParameterConfig addAnnotation(Annotation annotation);

ParameterConfig removeAnnotation(Predicate<AnnotationInfo> predicate);
ParameterConfig removeAllAnnotations();

}

public interface MethodInfo extends DeclarationInfo {
String name();
List<ParameterInfo> parameters();
Type returnType();
Type receiverType();
List<Type> throwsTypes();
List<TypeVariable> typeParameters();

boolean isConstructor();
boolean isStatic();
boolean isAbstract();
boolean isFinal();

int modifiers();

ClassInfo declaringClass();

}

public interface ParameterInfo extends DeclarationInfo {
String name();

Type type();

MethodInfo declaringMethod();

When an extension method declares a parameter of type MethodConfig or MethodInfo, it will be
called for each method and constructor of each discovered class matching the criteria defined on
the @Enhancement annotation. It is possible to navigate to method parameters from a MethodConfig
and configure them.

public interface FieldConfig extends DeclarationConfig {
FieldInfo info();

FieldConfig
FieldConfig
FieldConfig
FieldConfig
FieldConfig

addAnnotation(Class<? extends Annotation> annotationType);
addAnnotation(AnnotationInfo annotation);
addAnnotation(Annotation annotation);
removeAnnotation(Predicate<AnnotationInfo> predicate);
removeAllAnnotations();

121

public interface FieldInfo extends DeclarationInfo {
String name();
Type type();

boolean isStatic();
boolean isFinal();
int modifiers();

ClassInfo declaringClass();

When an extension method declares a parameter of type FieldConfig or FieldInfo, it will be called
for each field of each discovered class matching the criteria defined on the @Enhancement annotation.

Additionally, extension methods annotated @Enhancement may declare parameters of the following
types:

* Types
* Messages (see The @Validation phase)

public interface Types {
Type of(Class<?> clazz);
VoidType ofVoid();
PrimitiveType ofPrimitive(PrimitiveType.PrimitiveKind kind);
ClassType ofClass(String name);
ClassType of(Class(ClassInfo clazz);
ArrayType ofArray(Type elementType, int dimensions);
ParameterizedType parameterized(Class<?> genericType, Class<?>... typeArguments);
ParameterizedType parameterized(Class<?> genericType, Type... typeArguments);
ParameterizedType parameterized(ClassType genericType, Type... typeArguments);
WildcardType wildcardWithUpperBound(Type upperBound);
WildcardType wildcardWithLowerBound(Type lowerBound);
WildcardType wildcardUnbounded();

The Types interface allows creating representations of the void pseudo-type, primitive types, class
types, array types, parameterized types and wildcard types.

To create instances of AnnotationInfo, AnnotationBuilder can be used.

12.4. The @Registration phase

In this phase, build compatible extensions may observe registered beans and observers.

Extension methods annotated @Registration must declare exactly one parameter of one of the
following types:

122

* BeanInfo
* InterceptorInfo

¢ ObserverInfo

public interface BeanInfo {
Scopelnfo scope();
Collection<Type> types();
Collection<AnnotationInfo> qualifiers();
ClassInfo declaringClass();
boolean isClassBean();
boolean isProducerMethod();
boolean isProducerField();
boolean isSynthetic();
MethodInfo producerMethod();
FieldInfo producerField();
boolean isAlternative();
boolean isReserve();
Integer priority();
String name();
DisposerInfo disposer();
Collection<StereotypeInfo> stereotypes();
Collection<InjectionPointInfo> injectionPoints();

When an extension method declares a parameter of type BeanInfo, it will be called for each bean
whose set of bean types matches the criteria defined on the @Registration annotation.

public interface InterceptorInfo extends BeanInfo {
Collection<AnnotationInfo> interceptorBindings();
boolean intercepts(InterceptionType interceptionType);

When an extension method declares a parameter of type InterceptorInfo, it will be called for each
interceptor whose set of bean types matches the criteria defined on the @Registration annotation.

public interface ObserverInfo {
Type eventType();
Collection<AnnotationInfo> qualifiers();
ClassInfo declaringClass();
MethodInfo observerMethod();
ParameterInfo eventParameter();
BeanInfo bean();
boolean isSynthetic();
int priority();
boolean isAsync();
Reception reception();
TransactionPhase transactionPhase();

123

When an extension method declares a parameter of type ObserverInfo, it will be called for each
observer whose observed event type matches the criteria defined on the @Registration annotation.

Additionally, extension methods annotated @Registration may declare parameters of the following
types:

* InvokerFactory

* Types

* Messages (see The @Validation phase)

public interface InvokerFactory {
InvokerBuilder<InvokerInfo> createInvoker(BeanInfo bean, MethodInfo method);

}

The InvokerFactory interface allows creating an InvokerBuilder for given target bean and target
method (see Using InvokerBuilder).

12.5. The @Synthesis phase

In this phase, build compatible extensions may register synthetic beans and observers.
Extension methods annotated @Synthesis may declare parameters of the following types:

* SyntheticComponents
* Types
* Messages (see The @Validation phase)

public interface SyntheticComponents {
<T> SyntheticBeanBuilder<T> addBean(Class<T> bean(Class);
<T> SyntheticObserverBuilder<T> addObserver(Class<T> eventType);
<T> SyntheticObserverBuilder<T> addObserver(Type eventType);

The SyntheticBeanBuilder and SyntheticObserverBuilder interfaces are used to configure:

* bean or observer attributes, such as scope, bean types, qualifiers, or observed event type;
 class of a bean creation/destruction function or observer notification function;
* a string-keyed parameter map.
The container creates an instance of the bean creation/destruction function or observer notification
function whenever it needs to create an instance of the bean, destroy the instance of the bean, or

notify the observer. When invoking the bean creation/destruction function or observer notification
function, the container passes the parameter map to it.

124

The parameter map may contain values of the following types:

* boolean

* int

* long

* double

» String

* (lass

* Enum

* Invoker

* any annotation type

« array of any previously mentioned type
When defining the parameter map on SyntheticBeanBuilder or SyntheticObserverBuilder, it is
possible to use ClassInfo, InvokerInfo, or AnnotationInfo to define parameter values. When such
parameter is looked up from the parameter map in the synthetic bean creation/destruction

function or the synthetic observer notification function, the value will be of type Class, Invoker, or
the respective annotation type.

12.6. The @Validation phase

In this phase, build compatible extensions may perform custom validation.
Extension methods annotated @Validation may declare parameters of the following types:

* Types

* Messages

public interface Messages {
void info(String message);
void info(String message, AnnotationTarget relatedTo);
void info(String message, BeanInfo relatedTo);
void info(String message, ObserverInfo relatedTo);

void warn(String message);

void warn(String message, AnnotationTarget relatedTo);
void warn(String message, BeanInfo relatedTo);

void warn(String message, ObserverInfo relatedTo);

void error(String message);

void error(String message, AnnotationTarget relatedTo);
void error(String message, BeanInfo relatedTo);

void error(String message, ObserverInfo relatedTo);
void error(Exception exception);

125

Calling any of the Messages.error() methods registers a deployment problem.

126

Chapter 13. Packaging and deployment

At deployment time, the container must perform bean discovery, execute build compatible
extensions, and detect definition errors and deployment problems. The term deployment time in
CDI Lite means before the application is started, such as during application compilation, or during
application startup at latest.

Bean discovery is the process of determining:

* Bean archives within application, and any beans contained within them
* Which alternatives, reserves and interceptors are enabled

* The ordering of enabled interceptors

Additional beans may be registered programmatically using build compatible extensions.

13.1. Bean archives

Bean classes of enabled beans must be deployed in bean archives.

A bean archive has a bean discovery mode of either annotated or none. This is governed by presence
of beans.xml file which can be either empty or it can declare the bean-discovery-mode attribute.
Default value for this attribute is annotated.

An archive which:

» contains a beans.xml file with the bean-discovery-mode of none, or,

* contains a portable extension or a build compatible extension and no beans.xml file
is not a bean archive.
An implicit bean archive is:

 an archive which contains a beans.xml file that is empty, or,

e an archive which contains a beans.xml file that has bean-discovery-mode attribute set to annotated

Any other archive which contains a beans.xml file is not portable in CDI Lite. More kinds of bean
archives exist in CDI Full.

Implementations that do not support CDI Full are required to ignore the content of the beans.xml
file, except for the bean-discovery-mode attribute. Implementations that do not support CDI Full are
required to detect presence of an archive which contains a beans.xml file that has bean-discovery-
mode attribute set to all and treat it as a deployment problem.

To ensure portability between CDI Lite and CDI Full, applications are encouraged to:

» always add a beans.xml file to an archive which contains classes with bean defining annotations;

* never add classes with bean defining annotations to an archive without beans. xml.

127

When determining which archives are bean archives, the container must consider all archives that
constitute the application. Implementations are encouraged to document how the candidate
archives are found in more detail.

The beans.xml file must be named:
e META-INF/beans.xml.
The container searches for beans in all bean archives discovered as described above.

If a bean class is deployed in two different bean archives, non-portable behavior results. Portable
applications must deploy each bean class in no more than one bean archive.

Implicit bean archives are likely to contain classes which are not deployed as beans.

An extension may be deployed in any archive, including those that are not bean archives.

13.2. Deployment
At deployment time, the container performs the following steps:

* First, the container must perform type discovery, as defined in Type discovery. As part of that,
the container must execute the @Discovery and @Enhancement phases of build compatible
extensions.

* Next, the container must perform bean discovery, as defined in Bean discovery. As part of that,
the container must execute the @Registration and @Synthesis phases of build compatible
extensions.

* Finally, the container must detect deployment problems by validating bean dependencies and
invoker lookups. As part of that, the container must execute the @/alidation phase of build
compatible extensions.

At any step, the container must abort deployment if any definition errors or deployment problems
exist, as defined in Problems detected automatically by the container.

13.3. Application initialization lifecycle

CDI Lite does not require the container to perform any other initialization during application
startup. With deployment complete, the container begins directing requests to the application.

13.4. Application shutdown lifecycle

When an application is stopped, the container must destroy all contexts.

13.5. Type and Bean discovery

The container automatically discovers managed beans (according to the rules of Which Java classes
are managed beans?) in bean archives and searches the bean classes for producer methods,
producer fields, disposer methods and observer methods.

128

13.5.1. Type discovery

First the container must discover types. The container discovers each Java class with a bean
defining annotation in an implicit bean archive.

The container must also execute the @Discovery phase of build compatible extensions and discover
all classes added using the Scanned(lasses API.

When all types are discovered, the container must execute the @Enhancement phase of build
compatible extensions and alter its metadata representation of discovered types accordingly.

13.5.2. Bean discovery
For every type in the set of discovered types (as defined in Type discovery), the container must:

* inspect the type metadata to determine if it is a bean, and then
* detect definition errors by validating the class and its metadata, and then
* determine which alternatives, reserves and interceptors are enabled, according to the rules

defined in Enabled and disabled beans.

For each enabled bean, the container must search the class for producer methods and fields, as
defined in Producer methods and in Producer fields, including resources, and for disposer methods
as defined in Disposer methods, and for observer methods.

Then, the container registers the Bean and ObserverMethod objects:
» For each enabled bean that is not an interceptor, the container registers an instance of the Bean

interface defined in The Bean interface.

» For each enabled interceptor, the container registers an instance of the Interceptor interface
defined in The Interceptor interface.

* For each observer method of every enabled bean, the container registers an instance of the

ObserverMethod interface defined in The ObserverMethod interface.

The container must execute the ERegistration phase of build compatible extensions for each
registered bean, interceptor, and observer method.

Next, the container must execute the @Synthesis phase of build compatible extensions. For each
registered synthetic bean, the container registers an instance of the Bean interface. For each
registered synthetic observer, the container registers an instance of the ObserverMethod interface.

Finally, the container must execute the @Registration phase of build compatible extensions for each
synthetic bean and synthetic observer method.

129

Part1.B - CDI Full

CDI Full contains all the functionality defined in CDI Lite and adds some additional features such as
specialization, decorators, session scope or conversation scope. Some of these concepts were briefly
mentioned in the previous CDI Lite chapter and this section of specification defines them in depth.

All rules from the CDI Lite specification apply to CDI Full, unless the CDI Full specification says
otherwise. Most sections of the CDI Full specification add new rules on top of the CDI Lite
specification, but some override the corresponding section of the CDI Lite specification and provide
a replacing set of rules.

130

Chapter 14. Scopes in CDI Full

14.1. Built-in scope types in CDI Full

In addition to built-in scope types defined in Built-in scope types, the following two built-in scopes
are present:

» The @SessionScoped annotation represents the session scope defined in Session context lifecycle.

* The @ConversationScoped annotation represents the conversation scope defined in Conversation
context lifecycle.

In addition to rules defined in Built-in scope types, the following rules apply.

If a decorator has any scope other than @Dependent, non-portable behavior results.

14.2. Bean defining annotations in CDI Full

In addition to bean defining annotations defined in Bean defining annotations, the following bean
defining annotations are present:

* @SessionScoped and @ConversationScoped annotations,

e @Decorator annotation.

14.2.1. Built-in stereotypes in CDI Full

In addition to built-in stereotypes defined in Built-in stereotypes, the following built-in stereotype is
present.

The special-purpose @Decorator stereotype is defined in Declaring a decorator.

131

Chapter 15. Inheritance and specialization
in CDI Full

15.1. Specializing a managed bean

In addition to rules defined in Managed beans, the following rules apply.

If a bean class of a managed bean X is annotated @Specializes, then the bean class of X must
directly extend the bean class of another managed bean Y. Then X directly specializes Y, as defined
in Specialization.

If the bean class of X does not directly extend the bean class of another managed bean, the
container automatically detects the problem and treats it as a definition error.

For example, MockLoginAction directly specializes LoginAction:

public class LoginAction { ... }

public class MockLoginAction extends LoginAction { ... }

15.2. Specializing a producer method

In addition to rules defined in Producer methods, the following rules apply.

If a producer method X is annotated @Specializes, then it must be non-static and directly override
another producer method Y. Then X directly specializes Y, as defined in Specialization.

If the method is static or does not directly override another producer method, the container
automatically detects the problem and treats it as a definition error.

public class MockShop extends Shop {

PaymentProcessor getPaymentProcessor() {
return new MockPaymentProcessor();

}

List<Product> getProducts() {
return PRODUCTS;

}

132

15.3. Specialization

If two beans both support a certain bean type, and share at least one qualifier, then they are both
eligible for injection to any injection point with that declared type and qualifier.

Consider the following beans:

@Default @Asynchronous
public class AsynchronousService implements Service {

}

@Alternative
public class MockAsynchronousService extends AsynchronousService {

}

Suppose that the MockAsynchronousService alternative is selected, as defined in Modularity:

@Alternative @Priority(jakarta.interceptor.Interceptor.Priority.APPLICATION+100)
public class MockAsynchronousService extends AsynchronousService {

}

Then, according to the rules of Unsatisfied and ambiguous dependencies, the following ambiguous
dependency is resolvable, and so the attribute will receive an instance of MockAsynchronousService:

@Inject Service service;

However, the following attribute will receive an instance of AsynchronousService, even though
MockAsynchronousService is a selected alternative, because MockAsynchronousService does not have
the qualifier @Asynchronous:

@Inject @Asynchronous Service service;
This is a useful behavior in some circumstances, however, it is not always what is intended by the

developer.

133

The only way one bean can completely override a second bean at all injection points is if it
implements all the bean types and declares all the qualifiers of the second bean. However, if the
second bean declares a producer method or observer method, then even this is not enough to
ensure that the second bean is never called!

To help prevent developer error, the first bean may:

* directly extend the bean class of the second bean, or

* directly override the producer method, in the case that the second bean is a producer method,
and then

explicitly declare that it specializes the second bean.

public class MockAsynchronousService extends AsynchronousService {

}

When an enabled bean, as defined in Enabled and disabled beans in CDI Full, specializes a second
bean, we can be certain that the second bean is never instantiated or called by the container. Even
if the second bean defines a producer or observer method, the method will never be called.

15.3.1. Direct and indirect specialization

The annotation @jakarta.enterprise.inject.Specializes is used to indicate that one bean directly
specializes another bean, as defined in Specializing a managed bean and Specializing a producer
method.

Formally, a bean X is said to specialize another bean Y if there is either:

* direct specialization, where X directly specializes Y, or

* transitive specialization, where a bean Z exists, such that X directly specializes Z and Z
specializes Y.

Then X will inherit the qualifiers and bean name of Y:

* the qualifiers of X include all qualifiers of Y, together with all qualifiers declared explicitly by X,
and

* if Y has a bean name, the bean name of X is the same as the bean name of Y.

Furthermore, X must have all the bean types of Y. If X does not have some bean type of Y, the
container automatically detects the problem and treats it as a definition error.

If Y has a bean name and X declares a bean name explicitly the container automatically detects the
problem and treats it as a definition error.

For example, the following bean would have the inherited qualifiers @Default and @Asynchronous:

134

@Mock @Specializes
public class MockAsynchronousService extends AsynchronousService {

}

If AsynchronousService declared a bean name:

@Default @Asynchronous @Named("asyncService")
public class AsynchronousService implements Service{

}

Then the bean name would also automatically be inherited by MockAsynchronousService.

If an interceptor or decorator is annotated @Specializes, non-portable behavior results.

135

Chapter 16. Dependency injection and
lookup in CDI Full

16.1. Modularity in CDI Full

In addition to rules defined in Modularity, the following rules apply.

A library may be an explicit bean archive or an implicit bean archive, as defined in Bean archives
in CDI Full.

An alternative is not available for injection, lookup or name resolution to classes in a module
unless the alternative is selected for the application or the module is a bean archive and the
alternative is selected for that bean archive.

16.1.1. Declaring selected alternatives in CDI Full

CDI Full provides an additional way to select alternatives to the one defined in Declaring selected
alternatives for an application.

16.1.1.1. Declaring selected alternatives for an application in CDI Full

In addition to rules defined in Declaring selected alternatives for an application, the following rule
applies.

Custom bean implementations which are also alternatives may implement Prioritized interface in
which case they will be enabled for entire application with given priority.

16.1.1.2. Declaring selected alternatives for a bean archive

An alternative may be explicitly declared using the <alternatives> element of the beans.xml file of
the bean archive. The <alternatives> element contains a list of bean classes and stereotypes. An
alternative is selected for the bean archive if either:

* the alternative is a managed bean and the bean class of the bean is listed,

* the alternative is a producer method, field or resource, and the bean class that declares the
method or field is listed, or

» any @Alternative stereotype of the alternative is listed.

<beans xmlns="https://jakarta.ee/xml/ns/jakartaee”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/beans_3_0.xsd"
version="3.0">
<alternatives>
<class>com.acme.myfwk.InMemoryDatabase</class>
<stereotype>com.acme.myfwk.Mock</stereotype>
<stereotype>com.acme.site.Australian</stereotype>

136

</alternatives>
</beans>

For each child <class> element, the container verifies that either:

* a class with the specified name exists and is annotated with @Alternative or an @Alternative
stereotype, or

* a class with the specified name exists and declares a field or method annotated with @Produces
and, at the same time, annotated with @Alternative or an @Alternative stereotype, or

* an alternative bean whose bean class has the specified name exists.
Otherwise, the container automatically detects the problem and treats it as a deployment problem.

Each child <stereotype> element must specify the name of an @Alternative stereotype annotation. If
there is no annotation with the specified name, or the annotation is not an @Alternative stereotype,
the container automatically detects the problem and treats it as a deployment problem.

If the same type is listed twice under the <alternatives> element, the container automatically
detects the problem and treats it as a deployment problem.

For a custom implementation of the Bean interface defined in The Bean interface, the container calls
isAlternative() to determine whether the bean is an alternative, and getBean(Class() and
getStereotypes() to determine whether an alternative is selected in a certain bean archive.

16.1.2. Enabled and disabled beans in CDI Full
The rules defined in Enabled and disabled beans are overridden as follows.

A bean is said to be enabled if:

it is deployed in a bean archive, and
* it is not a producer method or field of a disabled bean, and
* itis not specialized by any other enabled bean, as defined in Specialization, and

 either it is not an alternative, or it is a selected alternative for at least one bean archive or for
the application, and

either it is not a reserve, or it is a selected reserve for the application.

Otherwise, the bean is said to be disabled.

16.1.3. Inconsistent specialization

Suppose an enabled bean X specializes a second bean Y. If there is another enabled bean that
specializes Y we say that inconsistent specialization exists. The container automatically detects
inconsistent specialization and treats it as a deployment problem.

137

16.1.4. Inter-module injection in CDI Full
Instead of the rules in Inter-module injection, the following rules apply in CDI Full.
A bean is available for injection in a certain module if:

* the bean is not an interceptor or decorator,
e the bean is enabled,

 the bean is either not an alternative, or the bean is a selected alternative for the application, or
the module is a bean archive and the bean is a selected alternative of the bean archive, and

* the bean is either not a reserve, or the bean is a selected reserve for the application, and

» the bean class is required to be accessible to classes in the module, according to the class
accessibility requirements of the module architecture.

For a custom implementation of the Bean interface defined in The Bean interface, the container calls
getBean(Class() to determine the bean class of the bean and InjectionPoint.getMember() and then
Member.getDeclaringClass() to determine the class that declares an injection point.

16.2. Typesafe resolution in CDI Full

16.2.1. Performing typesafe resolution in CDI Full
In addition to rules defined in Performing typesafe resolution, the following rules apply.

* Parameterized and raw types are considered to match if they are identical or if the bean type is
assignable to the required type, as defined in Assignability of raw and parameterized types or
Assignability of raw and parameterized types for delegate injection points.

Furthermore, for a custom implementation of the Bean interface defined in The Bean interface, the
container calls getTypes() and getQualifiers() to determine the bean types and qualifiers.

16.2.2. Unsatisfied and ambiguous dependencies in CDI Full
In addition to rules defined in Unsatisfied and ambiguous dependencies, the following rules apply.

An unsatisfied or ambiguous dependency cannot exist for a decorator delegate injection point,
defined in Decorator delegate injection points.

Furthermore, for a custom implementation of the Bean interface defined in The Bean interface, the
container calls getInjectionPoints() to determine the set of injection points.

16.2.3. Assignability of raw and parameterized types in CDI Full

In addition to rules defined in Assignability of raw and parameterized types, the following rules
apply.

A special set of rules, defined in Assignability of raw and parameterized types for delegate injection
points, apply if and only if the injection point is a decorator delegate injection point.

138

16.3. Client proxies in CDI Full

In addition to the reasons for indirection defined in Client proxies, in CDI Full client proxies may be
passivated, even when the bean itself may not be. Therefore, the container must use a client proxy
whenever a bean with normal scope is injected into a bean with a passivating scope, as defined in
Passivation and passivating scopes. (On the other hand, beans with scope @Dependent must be
serialized along with their client.)

16.4. Dependency injection in CDI Full

16.4.1. Injection point metadata in CDI Full
The behavior of InjectionPoint metadata is overridden as follows:

e The getAnnotated() method returns an instance of
jakarta.enterprise.inject.spi.AnnotatedField or
jakarta.enterprise.inject.spi.AnnotatedParameter, depending upon whether the injection point
is an injected field or a constructor/method parameter. If the injection point represents a
dynamically obtained instance, then the getAnnotated() method returns an instance of
jakarta.enterprise.inject.spi.AnnotatedField or
jakarta.enterprise.inject.spi.AnnotatedParameter representing the Instance injection point,
depending upon whether the injection point is an injected field or a constructor/method
parameter.

* The isDelegate() method returns true if the injection point is a decorator delegate injection
point, and false otherwise. If the injection point represents a dynamically obtained instance
then isDelegate() returns false.

If the injection point represents a dynamically obtained instance then the isTransient() method
returns true if the Instance injection point is a transient field, and false otherwise. If this injection
point is declared as transient, after bean’s passivation, the value will not be restored. Instance<>
injection point is the preferred approach.

In CDI Full, the built-in implementation of InjectionPoint must be a passivation capable
dependency, as defined in Passivation capable dependencies.

16.4.2. Bean metadata in CDI Full

In addition to rules defined in Bean metadata, the following rules apply.
The interfaces Decorator also provides metadata about a bean.

The container must provide beans allowing a bean instance to obtain a Decorator instance
containing its metadata:

* a bean with scope @Dependent, qualifier @Default and type Decorator which can be injected into
any decorator instance

Additionally, the container must provide beans allowing decorators to obtain information about the

139

beans they decorate:

* a bean with scope @Dependent, qualifier @Decorated and type Bean which can be injected into any
decorator instance.

These beans are passivation capable dependencies, as defined in Passivation capable dependencies.

If a Decorator instance is injected into a bean instance other than a decorator instance, the
container automatically detects the problem and treats it as a definition error.

If a Bean instance with qualifier @Decorated is injected into a bean instance other than a decorator
instance, the container automatically detects the problem and treats it as a definition error.

If:

* the injection point is a field, an initializer method parameter or a bean constructor, with
qualifier @Default, then the type parameter of the injected Decorator must be the same as the
type declaring the injection point, or

* the injection point is a field, an initializer method parameter or a bean constructor of a
decorator, with qualifier @Decorated, then the type parameter of the injected Bean must be the
same as the delegate type.

Otherwise, the container automatically detects the problem and treats it as a definition error.

16.5. Programmatic lookup in CDI Full
16.5.1. The Instance interface in CDI Full

16.5.2. The built-in Instance in CDI Full

In addition to rules defined in The built-in Instance, the built-in implementation of Instance must be
a passivation capable dependency, as defined in Passivation capable dependencies.

140

Chapter 17. Scopes and contexts in CDI Full

17.1. The Contextual interface in CDI Full

In addition to rules defined in The Contextual interface, the following rule applies.

Portable extensions may define implementations of the Contextual interface that do not extend
Bean.

17.2. The Context interface in CDI Full

In addition to rules defined in The Context interface, the following rules apply.

When the container calls get() or destroy() for a context that is associated with a passivating scope
it must ensure that the given instance of Contextual and the instance of CreationalContext, if given,
are serializable.

The Context interface may be called by portable extensions.

A context object may be defined for any of the built-in scopes and registered with the container
using the AfterBeanDiscovery event as described in AfterBeanDiscovery event.

17.3. Dependent pseudo-scope in CDI Full

17.3.1. Dependent objects in CDI Full

In addition to rules defined in Dependent objects, the following rules apply.

* Instances of decorators are dependent objects of the bean instance they decorate.

17.4. Contextual instances and contextual references
in CDI Full

17.4.1. Contextual instance of a bean in CDI Full
In addition to rules defined in Contextual instance of a bean, the following rule applies.

For a custom implementation of the Bean interface defined in The Bean interface, the container calls
getScope() to determine the bean scope.

17.5. Passivation and passivating scopes

The temporary transfer of the state of an idle object held in memory to some form of secondary
storage is called passivation. The transfer of the passivated state back into memory is called
activation.

141

17.5.1. Passivation capable beans

A bean is called passivation capable if the container is able to temporarily transfer the state of any
idle instance to secondary storage.

* A managed bean is passivation capable if and only if the bean class is serializable and all
interceptors and decorators of the bean are passivation capable.

* A producer method is passivation capable if and only if it never returns a value which is not
passivation capable at runtime.

* A producer field is passivation capable if and only if it never refers to a value which is not

passivation capable at runtime.

A custom implementation of Bean is passivation capable if it implements the interface
PassivationCapable. An implementation of Contextual that is not a bean is passivation capable if it
implements both PassivationCapable and Serializable.

public interface PassivationCapable {
public String getId();

The getId() method must return a value that uniquely identifies the instance of Bean or Contextual.
It is recommended that the string contain the package name of the class that implements Bean or
Contextual.

17.5.2. Passivation capable injection points
We call an injection point of a bean passivation capable if the injection point is:

* a transient field, or
* anon-transient field which resolves to a bean that is a passivation capable dependency, or
* a bean constructor parameter which is annotated with @TransientReference, or

* a bean constructor parameter which resolves to a bean that is a passivation capable
dependency, or

* a method parameter which is annotated with @TransientReference, or
* a method parameter which resolves to a bean that is a passivation capable dependency.
17.5.3. Passivation capable dependencies

A bean is called a passivation capable dependency if any contextual reference for that bean is
preserved when the object holding the reference is passivated and then activated.

The container must guarantee that:

+ all beans with normal scope are passivation capable dependencies,

« all passivation capable beans with scope @Dependent are passivation capable dependencies,

142

* the built-in beans of type Instance, Event, InjectionPoint and BeanManager are passivation
capable dependencies.

A custom implementation of Bean is a passivation capable dependency if it implements
PassivationCapable.

17.5.4. Passivating scopes
A passivating scope requires that:

* beans with the scope are passivation capable, and

* implementations of Contextual passed to any context object for the scope are passivation
capable.

Passivating scopes must be explicitly declared @NormalScope(passivating=true).

For example, the built-in session and conversation scopes defined in Context management for built-
in scopes in CDI Full are passivating scopes. No other built-in scopes are passivating scopes.

17.5.5. Validation of passivation capable beans and dependencies

For every bean which declares a passivating scope, the container must validate that the bean truly
is passivation capable and that, in addition, its dependencies are passivation capable.

If a managed bean which declares a passivating scope, or a built-in bean:

* is not passivation capable,
* has an injection point that is not passivation capable,
* has an interceptor or decorator that is not passivation capable,

* has an interceptor or decorator with an injection point that is not passivation capable,
then the container automatically detects the problem and treats it as a deployment problem.
If a producer method declares a passivating scope and:

* has a return type that is declared final and does not implement or extend Serializable, or,

* has an injection point that is not passivation capable
then the container automatically detects the problem and treats it as a deployment problem.

If a producer method declares a passivating scope and doesn’t only return Serializable types at
runtime, then the container must throw an I1legalProductException.

If a producer field declares a passivating scope and has a type that is declared final and does not
implement or extend Serializable then the container automatically detects the problem and treats
it as a deployment problem.

If a producer field declares a passivating scope and doesn’t only contain Serializable values at
runtime then the container must throw an IllegalProductException.

143

If a producer method or field of scope @Dependent returns an unserializable object for injection into

an injection point that requires a passivation capable dependency, the container must throw an
I1legalProductException

For a custom implementation of Bean, the container calls getInjectionPoints() to determine the
injection points, and InjectionPoint.isTransient() to determine whether the injection point is a
transient field.

If a managed bean which declares a passivating scope type, has a decorator or interceptor which is
not a passivation capable dependency, the container automatically detects the problem and treats it
as a deployment problem.

17.6. Context management for built-in scopes in CDI
Full

17.6.1. Session context lifecycle

The session context is provided by a built-in context object for the built-in passivating scope type
@SessionScoped.

17.6.2. Conversation context lifecycle

The conversation context is provided by a built-in context object for the built-in passivating scope
type @ConversationScoped.

17.6.3. The Conversation interface

The container provides a built-in bean with bean type Conversation, scope @RequestScoped, and
qualifier @Default, named jakarta.enterprise.context.conversation.

public interface Conversation {
public void begin();
public void begin(String id);
public void end();
public String getId();
public long getTimeout();
public void setTimeout(long milliseconds);
public boolean isTransient();

* begin() marks the current transient conversation long-running. A conversation identifier may,
optionally, be specified. If no conversation identifier is specified, an identifier is generated by
the container.

* end() marks the current long-running conversation transient.

* getId() returns the identifier of the current long-running conversation, or a null value if the
current conversation is transient.

144

* getTimeout() returns the timeout, in milliseconds, of the current conversation.
e setTimeout() sets the timeout of the current conversation.

* isTransient() returns true if the conversation is marked transient, or false if it is marked long-
running.

If any method of Conversation is called when the conversation scope is not active, a
ContextNotActiveException is thrown.

If end() is called, and the current conversation is marked transient, an I1legalStateException is
thrown.

If begin() is called, and the current conversation is already marked long-running, an
I1legalStateException is thrown.

If begin() is called with an explicit conversation identifier, and a long-running conversation with
that identifier already exists, an I'1legalArqgumentException is thrown.

17.7. Context management for custom scopes in CDI
Full

In addition to rules defined in Context management for custom scopes, the following rule applies.

A portable extension may define a custom context object for built-in scopes and custom scopes. For
example, a remoting framework might provide a request context object for the built-in request
scope.

145

Chapter 18. Lifecycle of contextual instances
in CDI Full

18.1. Container invocations and interception in CDI
Full

Instead of the rules in Container invocations and interception, the following rules apply in CDI Full.
When the application invokes:
* a method of a bean via a contextual reference to the bean, as defined in Contextual reference

for a bean,

* a method of a bean via a non-contextual reference to the bean, if the instance was created by
the container (e.g. using InjectionTarget.produce() or UnmanagedInstance.produce(), or

* a method of a bean via a non-contextual reference to the bean, if the instance was enhanced
with the InterceptionFactory interface as defined in The InterceptionFactory interface,

the invocation is treated as a business method invocation.

When the container invokes a method of a bean, the invocation may or may not be treated as a
business method invocation:
 Invocations of initializer methods by the container are not business method invocations.

 Invocations of producer, disposer and observer methods by the container are business method
invocations and are intercepted by method interceptors and decorators.

* Invocation of lifecycle callbacks by the container are not business method invocations, but are
intercepted by interceptors for lifecycle callbacks.

* Invocations of interceptors and decorator methods during method or lifecycle callback
interception are not business method invocations, and therefore no recursive interception
occurs.

* Invocations of methods declared by java.lang.Object are not business method invocations.

A method invocation passes through method interceptors and decorators if, and only if, it is a
business method invocation.

Otherwise, the invocation is treated as a normal Java method call and is not intercepted by the
container.

146

Chapter 19. Interceptor bindings in CDI Full

This specification defines various extensions to the Jakarta Interceptors specification, including
how to override the interceptor order defined by the @Priority annotation.

CDI Full implementations are required to support the entire Jakarta Interceptors specification,
including:

* associating interceptors with classes and methods using the @jakarta.interceptor.Interceptors
annotation,

* declaring @AroundInvoke interceptor methods on target classes (i.e. on beans).
Furthermore, CDI Full implementations are required to support additional features, including:

* custom implementations of Interceptor,
» usage of InterceptionFactory as described in The InterceptionFactory interface,

* enablement and ordering of interceptors per bean archive via beans.xml as described in
Interceptor enablement and ordering in CDI Full.

19.1. Binding an interceptor to a bean in CDI Full

In addition to rules defined in Binding an interceptor to a bean, the following rules apply.

Interceptor bindings may be used to associate interceptors with any managed bean that is not a
decorator.

It is possible to apply interceptors programmatically to the return value of a producer method, with
the InterceptionFactory interface as defined in The InterceptionFactory interface.

19.2. Interceptor enablement and ordering in CDI Full

This specification extends the Jakarta Interceptors specification and defines:

» support for enabling interceptors only for a bean archive, as defined by Contexts and
Dependency Injection 1.0, and

» the ability to override the interceptor order using the portable extension SPI, defined in
AfterTypeDiscovery event.

An interceptor may be explicitly enabled for a bean archive by listing its class under the
<interceptors> element of the beans.xml file of the bean archive.

<beans xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/beans_3_0.xsd"
version="3.0">
<interceptors>

147

<class>com.acme.myfwk.TransactionInterceptor</class>
<class>com.acme.myfwk.LoggingInterceptor</class>
</interceptors>
</beans>

The order of the interceptor declarations determines the interceptor ordering. Interceptors which
occur earlier in the list are called first.

Each child <class> element must specify the name of an interceptor class. If there is no class with
the specified name, or if the class with the specified name is not an interceptor class, the container
automatically detects the problem and treats it as a deployment problem.

If the same class is listed twice under the <interceptors> element, the container automatically
detects the problem and treats it as a deployment problem.

Interceptors enabled using @Priority are called before interceptors enabled using beans.xml.

An interceptor is said to be enabled if it is enabled in at least one bean archive or is listed in the
final list of interceptors for the application, as defined in AfterTypeDiscovery event.

If an interceptor is enabled for the application and for the bean archive, then the enablement from
the bean archive is ignored by the container. The interceptor will only be executed once based on
the @Priority annotation’s invocation chain.

19.3. Interceptor resolution in CDI Full

In addition to rules defined in Interceptor resolution, the following rules apply.

This specification extends the Jakarta Interceptors specification and defines how the interceptor
bindings of a custom implementation of the Interceptor interface are determined.

For a custom implementation of the Interceptor interface defined in The Interceptor interface, the
container calls getInterceptorBindings() to determine the interceptor bindings of the interceptor
and intercepts() to determine if the interceptor intercepts a given kind of lifecycle callback or
business method.

A custom implementation of the Interceptor interface may implement the Prioritized interface to
be enabled for the entire application with a priority value.

148

Chapter 20. Decorators

A decorator implements one or more bean types and intercepts business method invocations of
beans which implement those bean types. These bean types are called decorated types.

Decorators are superficially similar to interceptors, but because they directly implement operations
with business semantics, they are able to implement business logic and, conversely, unable to
implement the cross-cutting concerns for which interceptors are optimized.

Decorators may be associated with any managed bean that is not itself an interceptor or decorator,
or with any built-in bean other than the built-in bean with type BeanManager and qualifier @Default.
Decorators are not automatically applied to the return value of a producer method or the current
value of a producer field.

A decorator instance is a dependent object of the object it decorates.

20.1. Decorator beans

A decorator is a managed bean. The set of decorated types of a decorator includes all bean types of
the managed bean which are Java interfaces, except for java.io.Serializable. The decorator bean
class and its superclasses are not decorated types of the decorator. The decorator class may be
abstract.

If the set of decorated types of a decorator is empty, the container automatically detects the
problem and treats it as a definition error.

If a decorator declares any scope other than @Dependent, the container automatically detects the
problem and treats it as a definition error.

20.1.1. Declaring a decorator

A decorator is declared by annotating the bean class with the @jakarta.decorator.Decorator
stereotype.

(jakarta.interceptor.Interceptor.Priority.APPLICATION)
class TimestampLogger implements Logger { ... }

20.1.2. Decorator delegate injection points

All decorators have a delegate injection point. A delegate injection point is an injection point of the
bean class. The type and qualifiers of the injection point are called the delegate type and delegate
qualifiers. The decorator applies to beans that are assignable to the delegate injection point.

The delegate injection point must be declared by annotating the injection point with the annotation
@jakarta.decorator.Delegate:

(jakarta.interceptor.Interceptor.Priority.APPLICATION)

149

class TimestamplLogger implements Logger {
Logger logger;

(jakarta.interceptor.Interceptor.Priority.APPLICATION)
class TimestampLogger implements Logger {
private Logger logger;

public TimestampLogger(Logger logger) {
this.logger=1ogger;
}

A decorator must have exactly one delegate injection point. If a decorator has more than one
delegate injection point, or does not have a delegate injection point, the container automatically
detects the problem and treats it as a definition error.

The delegate injection point must be an injected field, initializer method parameter or bean
constructor method parameter. If an injection point that is not an injected field, initializer method
parameter or bean constructor method parameter is annotated @Delegate, the container
automatically detects the problem and treats it as a definition error.

If a bean class that is not a decorator has an injection point annotated @Delegate, the container
automatically detects the problem and treats it as a definition error.

The container must inject a delegate object to the delegate injection point. The delegate object
implements the delegate type and delegates method invocations to remaining uninvoked
decorators and eventually to the bean. When the container calls a decorator during business
method interception, the decorator may invoke any method of the delegate object.

(jakarta.interceptor.Interceptor.Priority.APPLICATION)
class TimestampLogger implements Logger {
Logger logger;

void log(String message) {
logger.log(timestamp() +

+ message);

}

If a decorator invokes the delegate object at any other time, the invoked method throws an
I1legalStateException.

150

20.1.3. Decorated types of a decorator

The delegate type of a decorator must implement or extend every decorated type (with exactly the
same type parameters). If the delegate type does not implement or extend a decorated type of the
decorator (or specifies different type parameters), the container automatically detects the problem
and treats it as a definition error.

A decorator is not required to implement the delegate type.

A decorator may be an abstract Java class, and is not required to implement every method of every
decorated type. Whenever the decorator does not implement a method of the decorated type, the
container will provide an implicit implementation that calls the method on the delegate. If a
decorator has abstract methods that are not declared by a decorated type, the container
automatically detects the problem and treats it as a definition error.

The decorator intercepts every method which is declared by a decorated type of the decorator and
is implemented by the bean class of the decorator.

20.2. Decorator enablement and ordering

This specification defines two methods of enabling and ordering decorators. From Contexts and
Dependency Injection 1.1 onwards the @Priority annotation allows a decorator to be enabled and
ordered for an entire application. Contexts and Dependency Injection 1.0 allowed only for a
decorator to be enabled and ordered for a bean archive.

Decorators are called after interceptors. Decorators enabled using @Priority are called before
decorators enabled using beans.xml.

A decorator is said to be enabled if it is enabled in at least one bean archive or is listed in the final
list of decorators for the application, as defined in AfterTypeDiscovery event.

If a decorator is enabled for the application and for the bean archive, then the enablement from the
bean archive is ignored by the container. The decorator will only be executed once based on the
@Priority annotation’s invocation chain.

20.2.1. Decorator enablement and ordering for an application

A decorator may be enabled for the entire application by applying the @Priority annotation, along
with a priority value, on the decorator class. Decorators with the smaller priority values are called
first. The order of more than one decorator with the same priority is undefined.

(jakarta.interceptor.Interceptor.Priority.APPLICATION)
class TimestampLogger implements Logger {

The priority value ranges defined in the Java Interceptors specification section 5.5 should be used

151

when defining decorator priorities.

20.2.2. Decorator enablement and ordering for a bean archive

A decorator may be explicitly enabled by listing its bean class under the <decorators> element of the
beans.xml file of the bean archive.

<beans xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/beans_3_0.xsd"
version="3.0">
<decorators>
<class>com.acme.myfwk.TimestampLogger</class>
<class>com.acme.myfwk.IdentitylLogger</class>
</decorators>
</beans>

The order of the decorator declarations determines the decorator ordering. Decorators which occur
earlier in the list are called first.

Each child <class> element must specify the name of a decorator bean class. If there is no class with
the specified name, or if the class with the specified name is not a decorator bean class, the
container automatically detects the problem and treats it as a deployment problem.

If the same class is listed twice under the <decorators> element, the container automatically detects
the problem and treats it as a deployment problem.

20.3. Decorator resolution

The process of matching decorators to a certain bean is called decorator resolution. A decorator is
bound to a bean if:

* The bean is assignable to the delegate injection point according to the rules defined in Typesafe
resolution (using Assignability of raw and parameterized types for delegate injection points).
* The decorator is enabled in the bean archive containing the bean.

If a decorator matches a managed bean, the managed bean class must be a proxyable bean type, as
defined in Unproxyable bean types.

For a custom implementation of the Decorator interface defined in The Decorator interface, the
container calls getDelegateType(), getDelegateQualifiers() and getDecoratedTypes() to determine
the delegate type and qualifiers and decorated types of the decorator.

A custom implementation of the Decorator interface may implement the Prioritized interface to be
enabled for the entire application with a priority value.

152

20.3.1. Assignability of raw and parameterized types for delegate injection
points

Decorator delegate injection points have a special set of rules for determining assignability of raw
and parameterized types, as an exception to Assignability of raw and parameterized types.

A raw bean type is considered assignable to a parameterized delegate type if the raw types are
identical and all type parameters of the delegate type are either unbounded type variables or
java.lang.0Object.

A parameterized bean type is considered assignable to a parameterized delegate type if they have
identical raw type and for each parameter:

* the delegate type parameter and the bean type parameter are actual types with identical raw
type, and, if the type is parameterized, the bean type parameter is assignable to the delegate
type parameter according to these rules, or

* the delegate type parameter is a wildcard, the bean type parameter is an actual type and the
actual type is assignable to the upper bound, if any, of the wildcard and assignable from the
lower bound, if any, of the wildcard, or

* the delegate type parameter is a wildcard, the bean type parameter is a type variable and the
upper bound of the type variable is assignable to the upper bound, if any, of the wildcard and
assignable from the lower bound, if any, of the wildcard, or

* the delegate type parameter and the bean type parameter are both type variables and the upper
bound of the bean type parameter is assignable to the upper bound, if any, of the delegate type
parameter, or

 the delegate type parameter is a type variable, the bean type parameter is an actual type, and
the actual type is assignable to the upper bound, if any, of the type variable.

20.4. Decorator invocation

Whenever a business method is invoked on an instance of a bean with decorators, the container
intercepts the business method invocation and, after processing all interceptors of the method,
invokes decorators of the bean.

The container searches for the first decorator of the instance that implements the method that is
being invoked as a business method. If no such decorator exists, the container invokes the business
method of the intercepted instance. Otherwise, the container calls the method of the decorator.

When any decorator is invoked by the container, it may in turn invoke a method of the delegate.
The container intercepts the delegate invocation and searches for the first decorator of the instance
such that:

* the decorator occurs after the decorator invoking the delegate, and

* the decorator implements the method that is being invoked upon the delegate.

If no such decorator exists, the container invokes the business method of the intercepted instance.
Otherwise, the container calls the method of the decorator.

153

20.5. Additional decorator rules

This chapter congregates various rules and limitations that apply to decorators in regard to other
chapters of the specification.

20.5.1. Bean names

In addition to rules defined in Beans with no name, the following rules apply.

If a decorator has a name, non-portable behavior results.

20.5.2. Alternatives

In addition to rules defined in Declaring an alternative, the following rules apply.

If a decorator is an alternative, non-portable behavior results.

20.5.3. Reserves
In addition to rules defined in Declaring a reserve, the following rules apply.

If a decorator is a reserve, non-portable behavior results.

20.6. Managed beans

In addition to rules defined in Managed beans, the following rules apply.

If the bean class of a managed bean is annotated with both @Interceptor and @Decorator, the
container automatically detects the problem and treats it as a definition error.

20.7. Producer methods

In addition to rules defined in Declaring a producer method, the following rules apply.

Decorators may not declare producer methods. If a decorator has a method annotated @Produces,
the container automatically detects the problem and treats it as a definition error.

20.8. Producer fields

In addition to rules defined in Declaring a producer field, the following rules apply.

Decorators may not declare producer fields. If a decorator has a field annotated @Produces, the
container automatically detects the problem and treats it as a definition error.

20.9. Disposer methods

In addition to rules defined in Declaring a disposer method, the following rules apply.

154

Decorators may not declare disposer methods. If a decorator has a method annotated @Disposes, the
container automatically detects the problem and treats it as a definition error.

20.10. Unproxyable bean types
In addition to rules defined in Unproxyable bean types, the following rules apply.
A bean type must be proxyable if an injection point resolves to a bean:

 that has an associated decorator.

Otherwise, the container automatically detects the problem, and treats it as a deployment problem.

155

Chapter 21. Events in CDI Full

21.1. Firing events in CDI Full

21.1.1. The built-in Event in CDI Full
In addition to rules defined in The built-in Event, the following rule applies.

The built-in implementation must be a passivation capable dependency, as defined in Passivation
capable dependencies.

21.2. Observer resolution in CDI Full

In addition to rules defined in Observer resolution, the following rule applies.

For a custom implementation of the ObserverMethod interface defined in The ObserverMethod
interface, the container must call getObservedType() and getObservedQualifiers() to determine the
observed event type and qualifiers, and isAsync() to determine whether the observer is
asynchronous or synchronous.

21.3. Observer methods in CDI Full

In addition to rules defined in Observer methods, the following rules apply.

An observer method is a non-abstract method of a portable extension, as defined in Container
lifecycle events.

A portable extension may declare multiple observer methods.

21.3.1. Declaring an observer method in CDI Full
In addition to rules defined in Declaring an observer method, the following rules apply.

Decorators may not declare observer methods. If a decorator has a method with a parameter
annotated @0bserves or @0bservesAsync, the container automatically detects the problem and treats
it as a definition error.

21.4. Observer notification in CDI Full

In addition to rules defined in Observer notification, the following rule applies.

For a custom implementation of the ObserverMethod interface defined in The ObserverMethod
interface, the container must call getTransactionPhase() to determine if the observer method is
transactional observer method, and notify() which accepts
jakarta.enterprise.inject.spi.EventContext to invoke the method.

156

Chapter 22. Method invokers in CDI Full

22.1. Building an Invoker in CDI Full

In addition to rules defined in Building an Invoker, the following rules apply.

When the target bean is a decorator, attempting to build an invoker leads to a deployment problem.

22.2. Using InvokerBuilder in CDI Full

In addition to rules defined in Using InvokerBuilder, the following rules apply.

InvokerBuilder can be obtained in portable extensions from ProcessManagedBean.createInvoker():

public interface ProcessManagedBean<X> extends ProcessBean<X> {

InvokerBuilder<Invoker<X, 7>> createlnvoker(AnnotatedMethod<? super X> method);

The target bean of the created invoker is the bean for which the ProcessManagedBean event was fired.
The target method of the created invoker is the method represented by the AnnotatedMethod object
passed to createInvoker().

Calling InvokerBuilder.build() produces an Invoker which should be stored for usage at application
runtime.

157

Chapter 23. Portable extensions

A portable extension may integrate with the container by:

* Providing its own beans, interceptors and decorators to the container
* Injecting dependencies into its own objects using the dependency injection service
* Providing a context implementation for a custom scope

* Augmenting or overriding the annotation-based metadata with metadata from some other
source

23.1. The Bean interface

The BeanAttributes interface exposes the basic attributes of a bean.

public interface BeanAttributes<T> {
public Set<Type> getTypes();
public Set<Annotation> getQualifiers();
public Class<? extends Annotation> getScope();
public String getName();
public Set<Class<? extends Annotation>> getStereotypes();
public boolean isAlternative();
public boolean isReserve();

* getTypes(), getQualifiers(), getScope(), getName() and getStereotypes() must return the bean
types, qualifiers, scope type, bean name and stereotypes of the bean, as defined in Concepts.

e isAlternative() must return true if the bean is an alternative, and false otherwise.
e isReserve() must return true if the bean is a reserve, and false otherwise.

The interface jakarta.enterprise.inject.spi.Bean defines everything the container needs to
manage instances of a certain bean.

public interface Bean<T> extends Contextual<T>, BeanAttributes<T> {
public Class<?> getBeanClass();
public Set<InjectionPoint> getInjectionPoints();

* getBeanClass() returns the bean class of the managed bean or of the bean that declares the
producer method or field.

* getInjectionPoints() returns a set of InjectionPoint objects, defined in Injection point
metadata, representing injection points of the bean, that will be validated by the container at
initialization time.

Note that implementations of Bean must also implement the inherited operations defined by the

158

Contextual interface defined in The Contextual interface.
An instance of Bean must exist for every enabled bean.

A portable extension may add support for new kinds of beans beyond those defined by the this
specification by implementing Bean and registering beans with the container, using the mechanism
defined in AfterBeanDiscovery event.

Custom implementations of Bean are encouraged to implement PassivationCapable and may be
required to in later revisions of this specification.

23.1.1. The Decorator interface

The Bean object for a decorator must implement the interface
jakarta.enterprise.inject.spi.Decorator.

public interface Decorator<T> extends Bean<T> {
public Set<Type> getDecoratedTypes();
public Type getDelegateType();
public Set<Annotation> getDelegateQualifiers();

» getDecoratedTypes() returns the decorated types of the decorator.
» getDelegateType() and getDelegateQualifiers() return the delegate type and qualifiers of the

decorator.

An instance of Decorator exists for every enabled decorator.

23.1.2. The Interceptor interface

The Bean object for an interceptor must implement jakarta.enterprise.inject.spi.Interceptor.

public interface Interceptor<T> extends Bean<T> {

public Set<Annotation> getInterceptorBindings();

public boolean intercepts(InterceptionType type);

public Object intercept(InterceptionType type, T instance, InvocationContext ctx)
throws Exception;

}

» getInterceptorBindings() returns the interceptor bindings of the interceptor.

 intercepts() returns true if the interceptor intercepts the specified kind of lifecycle callback or
method invocation, and false otherwise.

 intercept() invokes the specified kind of lifecycle callback or method invocation interception
upon the given instance of the interceptor.

An InterceptionType identifies the kind of lifecycle callback or business method.

159

public enum InterceptionType {
AROUND_INVOKE, AROUND_CONSTRUCT, POST_CONSTRUCT, PRE_DESTROY, PRE_PASSIVATE,
POST_ACTIVATE, AROUND_TIMEOUT

}

An instance of Interceptor exists for every enabled interceptor.

23.1.3. The ObserverMethod interface

The interface jakarta.enterprise.inject.spi.ObserverMethod defines everything the container needs
to know about an observer method.

public interface ObserverMethod<T> extends Prioritized {
public Class<?> getBeanClass();
public Bean<?> getDeclaringBean();
public Type getObservedType();
public Set<Annotation> getObservedQualifiers();
public Reception getReception();
public TransactionPhase getTransactionPhase();
public int getPriority();
public void notify(T event);
public void notify(EventContext<T> eventContext);
public boolean isAsync();

» getBean(lass() returns the class of the type that declares the observer method.

* getDeclaringBean() returns the Bean object that declares the observer method. Return value is
undefined for synthetic observers.

» getObservedType() and getObservedQualifiers() return the observed event type and qualifiers.
» getReception() returns IF_EXISTS for a conditional observer and ALWAYS otherwise.

* getTransactionPhase() returns the appropriate transaction phase for a transactional observer
method or IN_PROGRESS otherwise.

* getPriority() this method inherited from Prioritized interface returns the priority that will be
used by the container to determine the notification order as defined in Observer ordering. If
this method is not implemented the default priority APPLICATION + 500 is assumed.

* notify() calls the observer method, as defined in Observer notification.

* isAsync() returns true if the method is an asynchronous observer method otherwise returns
false.

An instance of ObserverMethod must exist for every observer method of every enabled bean.

23.1.4. The Prioritized interface

CDI 2.0 introduced the prioritized interface to add programmatic priority to custom SPI

160

implementation.

public interface Prioritized {
int getPriority();
}

23.2. The Producer and InjectionTarget interfaces

The interface jakarta.enterprise.inject.spi.Producer provides a generic operation for producing
an instance of a type.

public interface Producer<T> {
public T produce(CreationalContext<T> ctx);
public void dispose(T instance);
public Set<InjectionPoint> getInjectionPoints();

For a Producer that represents a class:

» produce() calls the constructor annotated @Inject if it exists, or the constructor with no
parameters otherwise, as defined in Injection using the bean constructor, and returns the
resulting instance. If the class has interceptors, produce() is responsible for building the
interceptors and decorators of the instance. The instance returned by produce() may be a proxy.

* dispose() does nothing.

* getInjectionPoints() returns the set of InjectionPoint objects representing all injected fields,
bean constructor parameters and initializer method parameters.

For a Producer that represents a producer method or field:

* produce() calls the producer method on, or accesses the producer field of, a contextual instance
of the bean that declares the producer method, as defined in Invocation of producer or disposer
methods.

» dispose() calls the disposer method, if any, on a contextual instance of the bean that declares
the disposer method, as defined in Invocation of producer or disposer methods, or performs
any additional required cleanup, if any, to destroy state associated with a resource.

* getInjectionPoints() returns the set of InjectionPoint objects representing all parameters of the
producer method.

The subinterface jakarta.enterprise.inject.spi.InjectionTarget provides operations for
performing dependency injection and lifecycle callbacks on an instance of a type.

public interface InjectionTarget<T>
extends Producer<T> {
public void inject(T instance, CreationalContext<T> ctx);
public void postConstruct(T instance);

161

public void preDestroy(T instance);

* inject() performs dependency injection upon the given object. The container sets the value of
all injected fields, and calls all initializer methods, as defined in Injection of fields and initializer
methods.

e postConstruct() calls the @PostConstruct callback, if it exists.
 preDestroy() calls the @PreDestroy callback, if it exists.

Implementations of Producer and InjectionTarget must ensure that the set of injection points
returned by getInjectionPoints() are injected by produce() or inject().

23.3. The BeanManager object

In addition to rules defined in The BeanContainer object, the following rules apply.

The interface jakarta.enterprise.inject.spi.BeanManager provides operations for obtaining
contextual references for beans, along with many other operations of use to applications and
portable extensions.

The interface jakarta.enterprise.inject.spi.BeanManager extends
jakarta.enterprise.inject.spi.BeanContainer. In CDI Full environment, BeanContainer is subject to
the same rules as BeanManager.

The container provides a built-in bean with bean type BeanManager, scope @Dependent and qualifier
@Default. The built-in implementation must be a passivation capable dependency, as defined in
Passivation capable dependencies. Thus, any bean may obtain an instance of BeanManager by
injecting it:

@Inject BeanManager manager;

Note that, an exception is thrown if the following operations are called before the
AfterBeanDiscovery event is fired:

* getBeans(String),

» getBeans(Type, Annotation::-),

» getPassivationCapableBean(String)

e resolve(Set),

* resolveDecorators(Set, Annotation:::),

* resolvelnterceptors(InterceptionType, Annotation::),

* resolveObserverMethods(Object, Annotation::-),

validate(InjectionPoint),

and if the following operations are called before the AfterDeploymentValidation event is fired:

162

e createlnstance(),
» getReference(Bean, Type, CreationalContext),
» getInjectableReference(InjectionPoint, CreationalContext).

All other operations of BeanManager may be called at any time during the execution of the
application.

23.3.1. Obtaining a reference to the CDI container in CDI Full

In addition to rules defined in Obtaining a reference to the CDI container, the following rules apply.

Portable extensions and other objects sometimes interact directly with the container via
programmatic API call. The abstract jakarta.enterprise.inject.spi.CDI provides access to the
BeanManager as well providing lookup of bean instances.

A portable extension or other object may obtain a reference to the current container by calling
CDI.current(). CDI.getBeanManager() and CDI.getBeanContainer() may be called at any time after the
container fires the BeforeBeanDiscovery container lifecycle event until the container fires the
BeforeShutdown container lifecycle event. If methods on CDI are called at any other time, non-
portable behavior results.

23.3.2. Obtaining an injectable reference

The method BeanManager.getInjectableReference() returns an injectable reference for a given
injection point, as defined in Injectable references.

public Object getInjectableReference(InjectionPoint ij, CreationalContext<?> ctx);

The first parameter represents the target injection point. The second parameter is an instance of
CreationalContext that may be used to destroy any object with scope @Dependent that is created.

If the InjectionPoint represents a decorator delegate injection point, getInjectableReference()
returns a delegate, as defined in Decorator delegate injection points.

If typesafe resolution results in an unsatisfied dependency, the container must throw an
UnsatisfiedResolutionException. If typesafe resolution results in an unresolvable ambiguous
dependency, the container must throw an AmbiguousResolutionException.

Implementations of Bean usually maintain a reference to an instance of BeanManager. When the Bean
implementation performs dependency injection, it must obtain the contextual instances to inject by
calling BeanManager.getInjectableReference(), passing an instance of InjectionPoint that represents
the injection point and the instance of CreationalContext that was passed to Bean.create().

23.3.3. Obtaining non-contextual instance

A non-contextual instance can be obtained and injected from an InjectionTarget, however the
InjectionTarget interface is designed to work on contextual instances. A helper class, Unmanaged
provides a set of methods optimized for working with non-contextual instances.

163

For example:

Unmanaged<Foo> unmanagedFoo = new Unmanaged<Foo>(Foo.class);
UnmanagedInstance<Foo> fooInstance = unmanagedFoo.newInstance();
Foo foo = fooInstance.produce().inject().postConstruct().get();
... // Use the foo instance

fooInstance.preDestroy().dispose();

23.3.4. Obtaining a Bean by type in CDI Full

In addition to rules defined in Obtaining a Bean by type, the following rules apply.

The method BeanManager.getBeans() returns the set of beans which have the given required type
and qualifiers and are available for injection in the module or library containing the class into
which the BeanManager was injected or the class from whose JNDI environment namespace the
BeanManager was obtained, according to the rules for candidates of typesafe resolution defined in
Performing typesafe resolution.

23.3.5. Obtaining a Bean by name in CDI Full
In addition to rules defined in Obtaining a Bean by name, the following rules apply.

The method BeanManager.getBeans() which accepts a string returns the set of beans which have the
given bean name and are available for injection in the module or library containing the class into
which the BeanManager was injected or the class from whose JNDI environment namespace the
BeanManager was obtained, according to the rules of name resolution defined in Name resolution.

23.3.6. Obtaining a passivation capable bean by identifier

The method BeanManager.getPassivationCapableBean() returns the PassivationCapable bean with the
given identifier (see Passivation capable beans).

public Bean<?> getPassivationCapableBean(String 1id);

23.3.7. Validating an injection point

The BeanManager.validate() operation validates an injection point and throws an
InjectionException if there is a deployment problem (for example, an unsatisfied or unresolvable
ambiguous dependency) associated with the injection point.

public void validate(InjectionPoint injectionPoint);

23.3.8. Decorator resolution

The method BeanManager.resolveDecorators() returns the ordered list of decorators for a set of bean
types and a set of qualifiers and which are enabled in the module or library containing the class

164

into which the BeanManager was injected or the class from whose JNDI environment namespace the
BeanManager was obtained, as defined in Decorator resolution.

List<Decorator<?>> resolveDecorators(Set<Type> types, Annotation... qualifiers);

The first argument is the set of bean types of the decorated bean. The annotations are qualifiers
declared by the decorated bean.

If two instances of the same non repeating qualifier type are given, an I1legalArgumentException is
thrown.

If an instance of an annotation that is not a qualifier type is given, an I1legalArqumentException is
thrown.

If the set of bean types is empty, an I1legalArqumentException is thrown.

23.3.9. Interceptor resolution in CDI Full

In addition to rules defined in Interceptor resolution, the following rules apply.

The method BeanManager.resolveInterceptors() returns the ordered list of interceptors for a set of
interceptor bindings and a type of interception and which are enabled in the module or library
containing the class into which the BeanManager was injected or the class from whose JNDI
environment namespace the BeanManager was obtained, as defined in Interceptor resolution.

23.3.10. Determining if an annotation is a qualifier type, scope type,
stereotype or interceptor binding type in CDI Full

In addition to rules defined in Determining if an annotation is a qualifier type, scope type,
stereotype or interceptor binding type, the following rules apply.

A portable extension may test an annotation to determine if it is a qualifier type, scope type,
stereotype or interceptor binding type, obtain the set of meta-annotations declared by a stereotype
or interceptor binding type, or determine if a scope type is a normal or passivating scope.

public boolean isScope(Class<? extends Annotation> annotationType);

public boolean isQualifier(Class<? extends Annotation> annotationType);

public boolean isInterceptorBinding(Class<? extends Annotation> annotationType);
public boolean isStereotype(Class<? extends Annotation> annotationType);

public boolean isNormalScope(Class<? extends Annotation> scopeType);

public boolean isPassivatingScope(Class<? extends Annotation> scopeType);

public Set<Annotation> getInterceptorBindingDefinition(Class<? extends Annotation>
qualifierType);

public Set<Annotation> getStereotypeDefinition(Class<? extends Annotation> stereotype

)

165

23.3.11. Determining the hash code and equivalence of qualifiers and
interceptor bindings

A portable extension may determine if two qualifiers or two interceptor bindings are considered

equivalent for the purposes of typesafe resolution, as defined in Performing typesafe resolution.

public boolean areQualifiersEquivalent(Annotation qualifier1, Annotation qualifier2);
public boolean arelnterceptorBindingsEquivalent(Annotation interceptorBindingT,
Annotation interceptorBinding2);

A portable extension may determine the hash code of a qualifier or interceptor binding, ignoring
any members annotated with @Nonbinding.

public int getQualifierHashCode(Annotation qualifier);
public int getInterceptorBindingHashCode(Annotation interceptorBinding);

23.3.12. Obtaining an AnnotatedType for a class

The method BeanManager.createAnnotatedType() returns an AnnotatedType that may be used to read
the annotations of the given Java class or interface.

public <T> AnnotatedType<T> createAnnotatedType(Class<T> type);

23.3.13. Obtaining an InjectionTarget for a class

The method BeanManager.getInjectionTargetFactory() returns a factory capable of creating
container provided implementations of InjectionTarget for a given AnnotatedType or throws an
IllegalArgumentException if there is a definition error associated with any injection point of the

type.

public <T> InjectionTargetFactory<T> getInjectionTargetFactory(AnnotatedType<T> type);

public interface InjectionTargetFactory<T> {

public InjectionTarget<T> createInjectionTarget(Bean<T> bean);
public AnnotatedTypeConfigurator<T> configure();

Null should be passed to InjectionTargetFactory.createInjectionTarget() to create a non-
contextual injection target.

» configure() method returns an AnnotatedTypeConfigurator as defined in
AnnotatedTypeConfigurator SPI to configure the AnnotatedType used to create the

166

InjectionTargetFactory. Subsequent invocations of the configure() method within one
InjectionTargetFactory instance will always return the same AnnotatedTypeConfigurator
instance. Once createlnjectionTarget() method has been invoked, any invocations of
configure() throws an I1legalStateException.

23.3.14. Obtaining a Producer for a field or method

The method BeanManager.getProducerFactory() returns a factory capable of creating container
provided implementations of Producer for a given AnnotatedMethod or AnnotatedField, and declaring
bean, or throws an IllegalArgumentException if there is a definition error associated with the
producer method or field.

public <X> ProducerFactory<X> getProducerFactory(AnnotatedField<? super X> field,
Bean<X> declaringBean);

public <X> ProducerFactory<X> getProducerFactory(AnnotatedMethod<? super X> method,
Bean<X> declaringBean);

public interface ProducerFactory<X> {

public <T> Producer<T> createProducer(Bean<T> bean);

Null should be passed to ProducerFactory.createProducer() to create a producer of non-contextual
objects.

23.3.15. Obtaining an InjectionPoint

The method BeanManager.createInjectionPoint() returns a container provided implementation of
InjectionPoint for a given AnnotatedField or AnnotatedParameter or throws an
I1legalArgumentException if there is a definition error associated with the injection point.

public InjectionPoint createInjectionPoint(AnnotatedField<?> field);
public InjectionPoint createlnjectionPoint(AnnotatedParameter<?> parameter);

23.3.16. Obtaining a BeanAttributes

The method BeanManager.createBeanAttributes() returns a container provided implementation of
BeanAttributes by reading the annotations of a given AnnotatedType or AnnotatedMember, according to
the rules defined in Concepts, or throws an I1legalArgumentException if there is a definition error
associated with the declared bean attributes.

public <T> BeanAttributes<T> createBeanAttributes(AnnotatedType<T> type);
public BeanAttributes<?> createBeanAttributes(AnnotatedMember<?> member);

167

23.3.17. Obtaining a Bean

The method BeanManager.createBean() returns a container provided implementation of Bean. The
methods accept:

* a BeanAttributes, which determines the bean types, qualifiers, scope, name and stereotypes of
the returned Bean, the return values of isAlternative() and isReserve(), and
* a class, which determines the return value of Bean.getClass(), and

e an InjectionTargetFactory, which is used to obtain an InjectionTarget. The InjectionTarget is
used to create and destroy instances of the bean, to perform dependency injection and lifecycle
callbacks, and which determines the return value of Bean.getInjectionPoints().

public <T> Bean<T> createBean(BeanAttributes<T> attributes, Class<T> beanClass,
InjectionTargetFactory<T> injectionTargetFactory);

A second version of the method is provided to create a Bean from a producer. The method accepts:

* a BeanAttributes, which determines the bean types, qualifiers, scope, name and stereotypes of
the returned Bean, the return values of isAlternative() and isReserve(), and

* a class, which determines the return value of Bean.get(Class(), and

* a ProducerFactory, which is used to obtain a Producer. The Producer is used to create and destroy
instances of the bean, and which determines the return value of Bean.getInjectionPoints().

public <T, X> Bean<T> createBean(BeanAttributes<T> attributes, Class<X> beanClass,
ProducerFactory<X> producer);

23.3.18. Obtaining the instance of an Extension

The method BeanManager.getExtension() returns the container’s instance of an Extension class
declared in META-INF/services, or throws an IllegalArgumentException if the container has no
instance of the given class.

public <T extends Extension> T getExtension(Class<T> extensionClass);

23.3.19. Obtain an InterceptionFactory

The method BeanManager.getInterceptionFactory() returns an InterceptionFactory for the provided
type as defined in The InterceptionFactory interface.

<T> InterceptionFactory<T> createInterceptionFactory(CreationalContext<T> ctx, (lass<
T> clazz);

If the actual type parameter of the method is not a Java class, non-portable behavior results.

168

23.3.20. Obtain an Instance in CDI Full

In addition to rules defined in Obtain an Instance, the following rules apply.

The returned Instance object can only access instances of beans that are available for injection in
the module or library containing the class into which the BeanManager was injected or the Jakarta EE
component from whose JNDI environment namespace the BeanManager was obtained, according to
the rules defined in Typesafe resolution.

23.4. Unified EL integration API

Since CDI version 4.1, the Unified EL integration API, which is part of the BeanManager API, is
deprecated. The relevant methods are placed in a new interface
jakarta.enterprise.inject.spi.el.ELAwareBeanManager, which is present in a new supplemental CDI
API artifact: jakarta.enterprise:jakarta.enterprise.cdi-el-api.

The requirements for supporting the Unified EL integration API are defined in the Jakarta EE
Platform specification.

23.5. Alternative metadata sources

A portable extension may provide an alternative metadata source, such as configuration by XML.

The interfaces AnnotatedType, AnnotatedField, AnnotatedMethod, AnnotatedConstructor and
AnnotatedParameter in the package jakarta.enterprise.inject.spi allow a portable extension to
specify metadata that overrides the annotations that exist on a bean class. The portable extension is
responsible for implementing the interfaces, thereby exposing the metadata to the container.

In general, the behavior is as defined by the Java Language Specification, and only deviations from
the Java Language Specification are noted.

The interface jakarta.enterprise.inject.spi.AnnotatedType exposes the Class object and members.

public interface AnnotatedType<X>
extends Annotated {
public Class<X> getJavaClass();
public Set<AnnotatedConstructor<X>> getConstructors();
public Set<AnnotatedMethod<? super X>> getMethods();
public Set<AnnotatedField<? super X>> getFields();

» getConstructors() returns all default-access, public, protected or private constructors declared
for the type.

» getMethods() returns all default-access, public, protected or private methods declared on the
type and those declared on any supertypes. The container should call
AnnotatedMethod.getJavaMember().getDeclaringClass() to determine the type in the type
hierarchy that declared the method.

169

» getFields() returns all default-access, public, protected or private fields declared on the type
and those declared on any supertypes. The container should call
AnnotatedField.getJavaMember().getDeclaringClass() to determine the type in the type hierarchy
that declared the field.

When determining annotations on a type, the container must only consider the special inheritance
rules defined for scope types in Inheritance of type-level metadata.

The interface jakarta.enterprise.inject.spi.AnnotatedField exposes the Field object.

public interface AnnotatedField<X>
extends AnnotatedMember<X> {
public Field getJavaMember();

The interface jakarta.enterprise.inject.spi.AnnotatedMethod exposes the Method object.

public interface AnnotatedMethod<X>
extends AnnotatedCallable<X> {
public Method getJavaMember();

The interface jakarta.enterprise.inject.spi.AnnotatedConstructor exposes the Constructor object.

public interface AnnotatedConstructor<X>
extends AnnotatedCallable<X> {
public Constructor<X> getJavaMember();

The interface jakarta.enterprise.inject.spi.AnnotatedParameter exposes the position of the
parameter object and the declaring program element.

public interface AnnotatedParameter<X>
extends Annotated {
public int getPosition();
public AnnotatedCallable<X> getDeclaringCallable();

The interface jakarta.enterprise.inject.spi.AnnotatedMember exposes the Member object and the
AnnotatedType that defines the member.

public interface AnnotatedMember<X>
extends Annotated {
public Member getJavaMember();
public boolean isStatic();

170

public AnnotatedType<X> getDeclaringType();

The interface jakarta.enterprise.inject.spi.AnnotatedCallable exposes the parameters of an
invokable object.

CDI 1.1 deprecated the method AnnotatedMember.isStatic(). The container should instead call
AnnotatedMember.getJavaMember().getModifiers() to determine if the member is static.

public interface AnnotatedCallable<X>
extends AnnotatedMember<X> {
public List<AnnotatedParameter<X>> getParameters();

The interface jakarta.enterprise.inject.spi.Annotated exposes the overriding annotations and
type declarations.

public interface Annotated {
Type getBaseType();
Set<Type> getTypeClosure();
<T extends Annotation> T getAnnotation(Class<T> annotationType);
<T extends Annotation> Set<T> getAnnotations(Class<T> annotationType);
Set<Annotation> getAnnotations();
boolean isAnnotationPresent(Class<? extends Annotation> annotationType);

* getBaseType() returns the type of the program element.
» getTypeClosure() returns all types to which the base type should be considered assignable.

* getAnnotation(Class<T>) returns the program element annotation of the given annotation type,
or a null value.

* getAnnotations(Class<T>) returns the program element annotations of the given annotation
type, or an empty set.

* getAnnotations() returns all annotations of the program element.
* isAnnotationPresent(Class<T>) returns true if the program element has an annotation of the

given annotation type, or false otherwise.

The container must use the operations of Annotated and its subinterfaces to discover program
element types and annotations. The container must not directly call the Java Reflection API. In
particular, the container must:

* call Annotated.getBaseType() to determine the type of an injection point, event parameter or
disposed parameter,

o call Annotated.getTypeClosure() to determine the bean types of any kind of bean,

* call Annotated.getAnnotations() to determine the scope, qualifiers, stereotypes and interceptor

171

bindings of a bean,

call Annotated.isAnnotationPresent() and Annotated.getAnnotation() to read any bean

annotations defined by this specification, and

* call AnnotatedType.getConstructors(), AnnotatedType.getMethods() and AnnotatedType.getFields()

to determine the members of a bean class.

23.5.1. AnnotatedTypeConfigurator SPI

CDI 2.0 introduced a new SPI to help defining and creating instance for type metadata.

This SPI is composed of the following interfaces:

jakarta.enterprise.inject.spi.configurator.AnnotatedTypeConfigurator to configure
AnnotatedType

jakarta.enterprise.inject.spi.configurator.AnnotatedFieldConfigurator (defined
AnnotatedFieldConfigurator) to configure an AnnotatedField

jakarta.enterprise.inject.spi.confiqgurator.AnnotatedConstructorConfigurator (defined
AnnotatedConstructorConfigurator) to configure an AnnotatedConstructor

jakarta.enterprise.inject.spi.configurator.AnnotatedMethodConfigurator (defined
AnnotatedMethodConfigurator) to configure an AnnotatedMethod

jakarta.enterprise.inject.spi.configurator.AnnotatedParameterConfigurator (defined
AnnotatedParameterConfigurator) to configure an AnnotatedParameter

The container must provide an implementation for each of these interfaces.

AnnotatedTypeConfigurator is the entry point for this SPL. Implementation
AnnotatedTypeConfigurator is returned by methods in the following lifecycle event:

BeforeBeanDiscovery as defined in BeforeBeanDiscovery event

ProcessAnnotatedType as defined in ProcessAnnotatedType event

o AfterTypeDiscovery as defined in AfterTypeDiscovery event

public interface AnnotatedTypeConfigurator<T> {

AnnotatedType<T> getAnnotated();

AnnotatedTypeConfigurator<T> add(Annotation annotation);
AnnotatedTypeConfigurator<T> remove(Predicate<Annotation> predicate);
AnnotatedTypeConfigurator<T> removeAll();

Set<AnnotatedMethodConfigurator<T>> methods();
Stream<AnnotatedMethodConfigurator<T>> filterMethods(Predicate<AnnotatedMethod<T>>

predicate);

Set<AnnotatedFieldConfigurator<T>> fields();
Stream<AnnotatedFieldConfigurator<T>> filterFields(Predicate<AnnotatedField<T>>

predicate);

172

Set<AnnotatedConstructorConfigurator<T>> constructors();
Stream<AnnotatedConstructorConfigurator<T>> filterConstructors(Predicate

an

in

in

in

in

of

<AnnotatedConstructor<T>> predicate);

}

* getAnnotated() returns the original AnnotatedType with which this configurator was initialized
 add() adds an annotation to the configured element

* remove() removes annotations that match the specified predicate from the configured element
» removeAll() removes all annotations from the configured element

» methods() returns a set of AnnotatedMethodConfigurator to configure annotations on methods

o filterMethods() returns a Stream<AnnotatedMethodsConfigurator> filtered by applying the
provided Predicate on methods()

» fields() returns a set of AnnotatedFieldConfigurator to configure annotations on fields

o filterFields() returns a Stream<AnnotatedFieldConfigurator> filtered by applying the provided
Predicate on fields()

» constructors() returns a set of AnnotatedConstructorConfigurator to configure annotations on
constructors

o filterConstructors() returns a Stream<AnnotatedConstructorConfigurator> filtered by applying
the provided Predicate on Constructors()

23.5.1.1. AnnotatedMethodConfigurator

AnnotatedMethodConfigurator is obtained through AnnotatedTypeConfigurator as defined in
AnnotatedTypeConfigurator SPI

public interface AnnotatedMethodConfigurator<T> {
AnnotatedMethod<T> getAnnotated();
AnnotatedMethodConfigurator<T> add(Annotation annotation);
AnnotatedMethodConfigurator<T> remove(Predicate<Annotation> predicate);
AnnotatedMethodConfigurator<T> removeAll();
List<AnnotatedParameterConfigurator<T>> params();
Stream<AnnotatedParameterConfigurator<T>> filterParams(Predicate
<AnnotatedParameter<T>> predicate);

}

* getAnnotated() returns the original AnnotatedMethod with which this configurator was initialized
* add() adds an annotation to the configured element

* remove() removes annotations that match the specified predicate from the configured element

» removeAll() removes all annotations from the configured element

e params() returns a list of AnnotatedParameterConfigurator to configure annotations on
parameters.

e filterParams(Predicate<AnnotatedParameter<T>> predicate) returns a
Stream<AnnotatedParameterConfigurator> filtered by applying the provided Predicate on params()

173

23.5.1.2. AnnotatedConstructorConfigurator

AnnotatedConstructorConfigurator is obtained through AnnotatedTypeConfigurator as defined in
AnnotatedTypeConfigurator SPI

public interface AnnotatedConstructorConfigurator<T> {
AnnotatedConstructor<T> getAnnotated();
AnnotatedConstructorConfigurator<T> add(Annotation annotation);
AnnotatedConstructorConfigurator<T> remove(Predicate<Annotation> predicate);
AnnotatedConstructorConfigurator<T> removeAll();
List<AnnotatedParameterConfigurator<T>> params();
Stream<AnnotatedParameterConfigurator<T>> filterParams(Predicate
<AnnotatedParameter<T>> predicate);

}

* getAnnotated() returns the original AnnotatedConstructor with which this configurator was
initialized

* add() adds an annotation to the configured element

* remove() removes annotations that match the specified predicate from the configured element

* removeAll() removes all annotations from the configured element

» params() returns a list of AnnotatedParameterConfigurator to configure annotations on
parameters.

o filterParams(Predicate<AnnotatedParameter<T>> predicate) returns a
Stream<AnnotatedParameterConfigurator> filtered by applying the provided Predicate on params()

23.5.1.3. AnnotatedParameterConfigurator

AnnotatedParameterConfigurator is obtained through AnnotatedMethodConfigurator (as defined in
AnnotatedMethodConfigurator) and AnnotatedConstructorConfigurator as defined in
AnnotatedConstructorConfigurator.

public interface AnnotatedParameterConfigurator<T> {
AnnotatedParameter<T> getAnnotated();
AnnotatedParameterConfigurator<T> add(Annotation annotation);
AnnotatedParameterConfigurator<T> remove(Predicate<Annotation> predicate);
AnnotatedParameterConfigurator<T> removeAll();

* getAnnotated() returns the original AnnotatedParameter with which this configurator was
initialized

add() adds an annotation to the configured element
* remove() removes annotations that match the specified predicate from the configured element

» removeAll() removes all annotations from the configured element

174

23.5.1.4. AnnotatedFieldConfigurator

AnnotatedFieldConfigurator is obtained through AnnotatedTypeConfigurator as defined in
AnnotatedTypeConfigurator SPI:

public interface AnnotatedFieldConfigurator<T> {

AnnotatedField<T> getAnnotated();

AnnotatedFieldConfigurator<T> add(Annotation annotation);
AnnotatedFieldConfigurator<T> remove(Predicate<Annotation> predicate);
AnnotatedFieldConfigurator<T> removeAll();

getAnnotated() returns the original AnnotatedField with which this configurator was initialized

add() adds an annotation to the configured element

* remove() removes annotations that match the specified predicate from the configured element

removeAll() removes all annotations from the configured element

23.6. Container lifecycle events

During the application initialization process, the container fires a series of events, allowing
portable extensions to integrate with the container initialization process defined in Application
initialization lifecycle in CDI Full. These events are fired synchronously.

Observer methods of these events must belong to extensions. An extension is a service provider of
the service jakarta.enterprise.inject.spi.Extension declared in META-INF/services.

public interface Extension {}

If any method on the event object is called outside of the observer method invocation, an
I1legalStateException is thrown.

Service providers may have observer methods, which may observe any event, including any
container lifecycle event, and obtain an injected BeanManager reference. Any decorators associated
with BeanManager will not be applied. If other beans are injected into an extension’s observer
methods, non-portable behavior results. An extension may use BeanManager.getEvent() to deliver
events to observer methods defined on extensions. The container is not required to deliver events
fired during application initialization to observer methods defined on beans.

The container instantiates a single instance of each extension at the beginning of the application
initialization process and maintains a reference to it until the application shuts down. The
container delivers event notifications to this instance by calling its observer methods.

If an extension declares a static observer method whose event parameter type:

* is a container lifecycle event, or

175

* is java.lang.0Object and the event parameter has either no qualifiers or a single qualifier @Any,
non-portable behavior results.

The notification order for observer methods within extensions follows the same ordering rule as
defined in Observer ordering for non-extension observers. The priority of an observer method may
be declared using the @Priority annotation.

void beforeBeanDiscovery((jakarta.interceptor.Interceptor.Priority
.LIBRARY_BEFORE) BeforeBeanDiscovery event) { ... }

For each service provider, the container must provide a bean of scope @ApplicationScoped and
qualifier @Default, supporting injection of a reference to the service provider instance. The bean
types of this bean include the class of the service provider and all superclasses and interfaces.

Lifecycle events described below can be grouped into two categories:

 Application lifecycle events, that are fired once:
- BeforeBeanDiscovery

o AfterTypeDiscovery

o

AfterBeanDiscovery
o AfterDeploymentValidation
- BeforeShutdown
* Bean discovery events, that are fired multiple times:
> ProcessAnnotatedType
o ProcessInjectionPoint
o ProcessInjectionTarget
o ProcessBeanAttributes
o ProcessBean
> ProcessProducer
o ProcessObserverMethod

Note that the chronological order of these events is specified in Application initialization lifecycle in
CDI Full.

As these lifecycle events are fired, the container must also execute build compatible extensions.
Which phase of build compatible extensions should be executed when is indicated in the
description of the corresponding lifecycle events. Build compatible extensions annotated
@SkipIfPortableExtensionPresent must be ignored in CDI Full, if given portable extension is present.

23.6.1. BeforeBeanDiscovery event

The container must fire an event before it begins the type discovery process. The event object must

176

be of type jakarta.enterprise.inject.spi.BeforeBeanDiscovery:

public interface BeforeBeanDiscovery {

public void addQualifier(Class<? extends Annotation> qualifier);

public void addQualifier(AnnotatedType<? extends Annotation> qualifier);

public void addScope(Class<? extends Annotation> scopeType, boolean normal,
boolean passivating);

public void addStereotype(Class<? extends Annotation> stereotype, Annotation...
stereotypeDef);

public void addInterceptorBinding(Class<? extends Annotation> bindingType,
Annotation... bindingTypeDef);

public void addInterceptorBinding(AnnotatedType<? extends Annotation> bindingType
)i

public void addAnnotatedType(AnnotatedType<?> type, String id);

public AnnotatedTypeConfigurator<?> addAnnotatedType(Class<T> type,String id);

<T extends Annotation> AnnotatedTypeConfigurator<T> configureQualifier(Class<T>
qualifier);

<T extends Annotation> AnnotatedTypeConfigurator<T> configureInterceptorBinding
(Class<T> bindingType);
}

* addQualifier() declares an annotation type as a qualifier type.
* addScope() declares an annotation type as a scope type.
» addStereotype() declares an annotation type as a stereotype, and specifies its meta-annotations.

» addInterceptorBinding() declares an annotation type as an interceptor binding type, and
specifies its meta-annotations.

» addAnnotatedType() adds a given AnnotatedType to the set of types which will be scanned during
bean discovery, with an optional identifier.

Second version of the method returns a new AnnotatedTypeConfigurator as defined in
AnnotatedTypeConfigurator SPI to easily configure the AnnotatedType which will be added at the
end of the observer invocation. The returned AnnotatedTypeConfigurator is initialized with type
and annotations of the provided class.

» configureQualifier() returns a new AnnotatedTypeConfigurator as defined in
AnnotatedTypeConfigurator SPI to configure a new AnnotatedType and declares it as a qualifier

type.

» configurelnterceptorBinding() returns a new AnnotatedTypeConfigurator as defined in
AnnotatedTypeConfigurator SPI to configure a new AnnotatedType and declares it as an interceptor
binding.

void beforeBeanDiscovery(BeforeBeanDiscovery event) { ... }

If any observer method of the BeforeBeanDiscovery event throws an exception, the exception is

treated as a definition error by the container.

177

If any BeforeBeanDiscovery method is called outside of the observer method invocation, an
I1legalStateException is thrown.

The container must execute the @Discovery phase of build compatible extensions at this time.

23.6.2. AfterTypeDiscovery event

The container must fire an event when it has fully completed the type discovery process and before
it begins the bean discovery process. The event object must be of type
jakarta.enterprise.inject.spi.AfterTypeDiscovery.

public interface AfterTypeDiscovery {
public List<Class<?>> getAlternatives();
public List<Class<?>> getReserves();
public List<Class<?>> getInterceptors();
public List<Class<?>> getDecorators();
public void addAnnotatedType(AnnotatedType<?> type, String id);
public AnnotatedTypeConfigurator<?> addAnnotatedType(Class<T> type,String id);

» getAlternatives() returns the ordered list of enabled alternatives for the application, sorted by
priority in ascending order. Alternatives enabled for a bean archive are not included in the list.

* getReserves() returns the ordered list of enabled reserves for the application, sorted by priority
in ascending order.

» getInterceptors() returns the ordered list of enabled interceptors for the application, sorted by
priority in ascending order. Interceptors enabled for a bean archive are not included in the list.

» getDecorators() returns the ordered list of enabled decorators for the application, sorted by
priority in ascending order. Decorators enabled for a bean archive are not included in the list.

 addAnnotatedType() adds a given AnnotatedType to the set of types which will be scanned during
bean discovery, with an identifier.

The second version of the method, returns a new AnnotatedTypeConfigurator as defined in
AnnotatedTypeConfigurator SPI to easily configure the AnnotatedType which will be added at the
end of observer invocation. The returned AnnotatedTypeConfigurator is initialized with type and
annotations of the provided class.

If an alternative, reserve, interceptor or decorator is added using
AfterTypeDiscovery.addAnnotatedType(), non-portable behavior results.

Any observer of this event is permitted to add classes to, or remove classes from, the list of
alternatives, list of reserves, list of interceptors or list of decorators. The container must use the
final values of these collections, after all observers of AfterTypeDiscovery have been called, to
determine the order of the enabled alternatives, reserves, interceptors, and decorators for
application. The initial values of these collections are defined by the @Priority annotation.

void afterTypeDiscovery(AfterTypeDiscovery event) { ... }

178

If any observer method of a AfterTypeDiscovery event throws an exception, the exception is treated
as a definition error by the container.

If any AfterTypeDiscovery method is called outside of the observer method invocation, an
I1legalStateException is thrown.

23.6.3. AfterBeanDiscovery event

The container must fire an event when it has fully completed the bean discovery process, validated
that there are no definition errors relating to the discovered beans, and registered Bean and
ObserverMethod objects for the discovered beans.

The event object must be of type jakarta.enterprise.inject.spi.AfterBeanDiscovery:

public interface AfterBeanDiscovery {
public void addDefinitionError(Throwable t);
public void addBean(Bean<?> bean);
public BeanConfigurator<?> addBean();
public void addObserverMethod(ObserverMethod<?> observerMethod);
public ObserverMethodConfigurator<?> addObserverMethod();
public void addContext(Context context);
public <T> AnnotatedType<T> getAnnotatedType(Class<T> type, String id);
public <T> Iterable<AnnotatedType<T>> getAnnotatedTypes(Class<T> type);

* addDefinitionError() registers a definition error with the container, causing the container to
abort deployment after all observers have been notified.

* addBean() fires an event of type ProcessSyntheticBean containing the given Bean and then
registers the Bean with the container, thereby making it available for injection into other beans.
The given Bean may implement Interceptor or Decorator.

The second version of the method, returns a new BeanConfigurator as defined in
BeanConfigurator interface to easily configure the Bean which will be added at the end of
observer invocation. If the container is unable to process the configurator it automatically
detects the problem and treats it as a deployment problem.

* addObserverMethod() fires an event of type ProcessSyntheticObserverMethod containing the given
ObserverMethod and then registers the ObserverMethod with the container, thereby making it
available for event notifications.

If the given ObserverMethod does not override either ObserverMethod.notify(T) or
ObserverMethod.notify(EventContext<T>), the container automatically detects the problem and
treats it as a definition error.

The second version of the method, returns a new ObserverMethodConfigurator as defined in
ObserverMethodConfigurator interface to easily configure the ObserverMethod which will be added
at the end of observer invocation. If the container is unable to process the configurator it
automatically detects the problem and treats it as a deployment problem.

179

» addContext() registers a custom Context object with the container.

* getAnnotatedType() and getAnnotatedTypes() returns the AnnotatedType s discovered or added
during container initialization. The id of an AnnotatedType added by the container is not defined.
If the id passed is null, the container should substitute the container generated id.

A portable extension may take advantage of this event to register beans, interceptors, decorators,
observer methods and custom context objects with the container.

void afterBeanDiscovery(AfterBeanDiscovery event, BeanManager manager) { ...

}

If any observer method of the AfterBeanDiscovery event throws an exception, the exception is
treated as a definition error by the container.

If any AfterBeanDiscovery method is called outside of the observer method invocation, an
I1legalStateException is thrown.

The container must execute the @Synthesis phase of build compatible extensions at this time.

23.6.3.1. BeanConfigurator interface

CDI 2.0 introduced the jakarta.enterprise.inject.spi.configurator.BeanConfigurator interface to
help configuring a new Bean instance.

With BeanConfigurator you can perform all the operations defined in BeanAttributesConfigurator
interface plus the following:

* Initialize the bean metadata with one of its read() methods. It can be done from an existing
BeanAttributes or by reading metadata on a given AnnotatedType, according to the rules defined
in Concepts.

* Set the class of the bean with beanClass method.

* Add an injection point for the bean with addInjectionPoint method.

* Add multiple injection points for the bean with addInjectionPoints methods.

* Replace all injection points for the bean with injectionPoints methods.

* Make the bean implements PassivationCapable and set its id with id method.

* Set the priority of the bean, if it is an alternative or a reserve, with priority method.
 Set a callback to create a bean instance with createWith() or produceWith() method.

* Set a callback to destroy a bean instance with destroyWith() or disposeWith() method.

If a BeanConfigurator has no scope specified, the default scope rules, defined in Default scope, apply.

23.6.3.2. ObserverMethodConfigurator interface

CDI 2.0 introduced the jakarta.enterprise.inject.spi.configurator.ObserverMethodConfigurator
interface to help configuring an ObserverMethod instance.

180

With ObserverMethodConfigurator you can perform the following operations:
* Read the observer metadata from a java.lang.reflect.Method, AnnotatedMethod or an existing
ObserverMethod with one of its read() methods.
» Set the ObserverMethod bean class with beanClass method.
* Set the type of the observed event with observedType method.
* Add a qualifier with addQualifier method.
» Set or add multiple qualifiers with addQualifiers and qualifiers methods.
 Set the Reception type with reception method.
» Set the TransactionPhase type with transactionPhase method.
* Set the priority with priority method.
» Define the EventConsumer to call on notification with notifyWith method.

* Make the observer asynchronous with async method.

23.6.4. AfterDeploymentValidation event

The container must fire an event after it has validated that there are no deployment problems and
before processing requests.

The event object must be of type jakarta.enterprise.inject.spi.AfterDeploymentValidation:

public interface AfterDeploymentValidation {
public void addDeploymentProblem(Throwable t);
}

» addDeploymentProblem() registers a deployment problem with the container, causing the
container to abort deployment after all observers have been notified.

void afterDeploymentValidation(AfterDeploymentValidation event, BeanManager
manager) { ... }

If any observer method of the AfterDeploymentValidation event throws an exception, the exception
is treated as a deployment problem by the container.

If any AfterDeploymentValidation method is called outside of the observer method invocation, an
I1legalStateException is thrown.

The container must not allow any request to be processed by the deployment until all observers of
this event return.

The container must execute the @Validation phase of build compatible extensions at this time.

181

23.6.5. BeforeShutdown event

The container must fire a final event after it has finished processing requests and destroyed all
contexts.

The event object must be of type jakarta.enterprise.inject.spi.BeforeShutdown:

public interface BeforeShutdown {}

void beforeShutdown(BeforeShutdown event, BeanManager manager) { ... }

If any observer method of the BeforeShutdown event throws an exception, the exception is ignored
by the container.

23.6.6. ProcessAnnotatedType event

The container must fire an event, before it processes a type, for every Java class, interface
(excluding annotation type, a special kind of interface type) or enum discovered as defined in Type
discovery in CDI Full.

An event is not fired for any type annotated with @Vetoed, or in a package annotated with @Vetoed.

The event object must be of type jakarta.enterprise.inject.spi.ProcessAnnotatedType<X>, where X is
the class, for types discovered in a bean archive, or of type
jakarta.enterprise.inject.spi.ProcessSyntheticAnnotatedType<X> for types added by
BeforeBeanDiscovery.addAnnotatedType() or AfterTypeDiscovery.addAnnotatedType().

The annotation @WithAnnotations may be applied to the event parameter. If the annotation is
applied, the container must only deliver ProcessAnnotatedType events for types which contain at
least one of the annotations specified. The annotation can appear on the annotated type, or on any
member, or any parameter of any member of the annotated type, as defined in Alternative
metadata sources. The annotation may be applied as a meta-annotation on any annotation
considered.

If the @WithAnnotations annotation is applied to any other event parameter, the container
automatically detects the problem and treats it as a definition error.

public interface ProcessAnnotatedType<X> {
public AnnotatedType<X> getAnnotatedType();
public void setAnnotatedType(AnnotatedType<X> type);
public AnnotatedTypeConfigurator<X> configureAnnotatedType();
public void veto();

interface ProcessSyntheticAnnotatedType<X> extends ProcessAnnotatedType<X> {
public Extension getSource();

182

» getAnnotatedType() returns the AnnotatedType object that will be used by the container to read
the declared annotations.

» setAnnotatedType() replaces the AnnotatedType.

e configureAnnotatedType() returns an AnnotatedTypeConfigurator (as defined in
AnnotatedTypeConfigurator SPI) initialized with the AnnotatedType processed by the event to
easily configure the AnnotatedType which will be used to replace the original one at the end of
observer invocation. The method always returns the same AnnotatedTypeConfigurator

* veto() forces the container to ignore the type.

* getSource() returns the Extension instance that added the annotated type.

Any observer of this event is permitted to wrap and/or replace the AnnotatedType by calling either
setAnnotatedType() or configureAnnotatedType(). If both methods are called within an observer
notification an IllegalStateException is thrown. The container must use the final value of this
property, after all observers have been called, as the only source of types and annotations for the
program elements.

For example, the following observer decorates the AnnotatedType for every class that is discovered

by the container.

<T> void decorateAnnotatedType(ProcessAnnotatedType<T> pat) {
pat.setAnnotatedType(decorate(pat.getAnnotatedType()));
}

If any observer method of a ProcessAnnotatedType event throws an exception, the exception is
treated as a definition error by the container.

If any ProcessAnnotatedType method is called outside of the observer method invocation, an
I1legalStateException is thrown.

The container must execute the @Enhancement phase of build compatible extensions at this time.

23.6.7. ProcessInjectionPoint event

The container must fire an event for every injection point of every bean, interceptor or decorator.

The event object must be of type jakarta.enterprise.inject.spi.ProcessInjectionPoint<T, X>where
T is the bean class, and X is the declared type of the injection point.

public interface ProcessInjectionPoint<T, X> {
public InjectionPoint getInjectionPoint();
public void setInjectionPoint(InjectionPoint injectionPoint);
public InjectionPointConfigurator configureInjectionPoint();
public void addDefinitionError(Throwable t);

183

* getInjectionPoint() returns the InjectionPoint object that will be used by the container to
perform injection.

» setInjectionPoint() replaces the InjectionPoint.

» configurelnjectionPoint() returns an InjectionPointConfigurator (as defined in
InjectionPointConfiqurator interface) initialized with the InjectionPoint processed by the event
to easily configure the InjectionPoint which will be used to replace the original one at the end
of observer invocation. The method always returns the same InjectionPointConfigurator.

 addDefinitionError() registers a definition error with the container, causing the container to

abort deployment after bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the InjectionPoint by calling either
setInjectionPoint() or configurelnjectionPoint(). If both methods are called within an observer
notification an IllegalStateException is thrown. The container must use the final value of this
property, after all observers have been called, whenever it performs injection upon the injection
point.

If any observer method of a ProcessInjectionPoint event throws an exception, the exception is
treated as a definition error by the container.

If any ProcessInjectionPoint method is called outside of the observer method invocation, an
I1legalStateException is thrown.

23.6.7.1. InjectionPointConfigurator interface

CDI 2.0 introduced the jakarta.enterprise.inject.spi.configurator.InjectionPointConfigurator
interface to help configure an existing InjectionPoint instance.

With InjectionPointConfigurator you can perform the following operations:

* Set the type of InjectionPoint with type method.

* Add a qualifier with addQualifier method.

» Set or add multiple qualifiers with addQualifiers and qualifiers methods.
* Make the injection point delegate with delegate method.

* Make the injection point a transient field with transientField method.
23.6.8. ProcessInjectionTarget event
The container must fire an event for every bean, interceptor or decorator.
The event object must be of type jakarta.enterprise.inject.spi.ProcessInjectionTarget<X>, where X

is the bean class.

public interface ProcessInjectionTarget<X> {
public AnnotatedType<X> getAnnotatedType();
public InjectionTarget<X> getInjectionTarget();
public void setInjectionTarget(InjectionTarget<X> injectionTarget);
public void addDefinitionError(Throwable t);

184

* getAnnotatedType() returns the AnnotatedType representing the bean class.

* getInjectionTarget() returns the InjectionTarget object that will be used by the container to
perform injection.

» setInjectionTarget() replaces the InjectionTarget.

 addDefinitionError() registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the InjectionTarget. The container
must use the final value of this property, after all observers have been called, whenever it performs
injection upon the managed bean.

If any observer method of a ProcessInjectionTarget event throws an exception, the exception is
treated as a definition error by the container.

If any ProcessInjectionTarget method is called outside of the observer method invocation, an
IllegalStateException is thrown.

23.6.9. ProcessBeanAttributes event

The container must fire an event for each managed bean, producer, interceptor or decorator
deployed in a bean archive, before registering the Bean object. No event is fired for any:

* beans added programmatically using AfterBeanDiscovery.addBean(), or,

* for any built-in beans.

The event object must be of type jakarta.enterprise.inject.spi.ProcessBeanAttributes<T> where T
is the bean class of the bean, the return type of the producer method, or the type of the producer
field.

Resources are considered to be producer fields.

public interface ProcessBeanAttributes<T> {
public Annotated getAnnotated();
public BeanAttributes<T> getBeanAttributes();
public void setBeanAttributes(BeanAttributes<T> beanAttributes);
public BeanAttributesConfigurator<T> configureBeanAttributes();
public void addDefinitionError(Throwable t);
public void veto();
public void ignoreFinalMethods();

* getAnnotated() returns the AnnotatedType representing the bean class, the AnnotatedMethod
representing the producer field, or the AnnotatedField representing the producer field.

* getBeanAttributes() returns the BeanAttributes object that will be used by the container to
manage instances of the bean.

185

» setBeanAttributes() replaces the BeanAttributes.

» configureBeanAttributes() returns a BeanAttributesConfigurator (as defined in
BeanAttributesConfigurator interface) initialized with the BeanAttributes processed by the event
to easily configure the BeanAttributes which will be used to replace the original one at the end
of observer invocation. The method always returns the same BeanAttributesConfigurator.

» addDefinitionError() registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

 veto() forces the container to ignore the bean. If a bean that directly specializes another bean
(as defined in Specialization) is vetoed, non-portable behavior results.

* ignoreFinalMethods() Instructs the container to ignore all non-static, final methods with public,
protected or default visibility declared on any bean type of the specific bean during validation
of injection points that require proxyable bean type. These method should never be invoked
upon bean instances. Otherwise, unpredictable behavior results. It will bypass standard rules
defined in Unproxyable bean types.

Any observer of this event is permitted to wrap and/or replace the BeanAttributes by calling either
setBeanAttributes() or configureBeanAttributes(). If both methods are called within an observer
notification an IllegalStateException is thrown. The container must use the final value of this
property, after all observers have been called, to manage instances of the bean. Changes to
BeanAttributes are not propagated to the annotated type from which the bean definition was
created.

Any bean which has its bean attributes altered must have it’s definition validated during
deployment validation.

If any observer method of a ProcessBeanAttributes event throws an exception, the exception is
treated as a definition error by the container.

If any ProcessBeanAttributes method is called outside of the observer method invocation, an
I1legalStateException is thrown.

23.6.9.1. BeanAttributesConfigurator interface

CDI 2.0 introduced the jakarta.enterprise.inject.spi.configurator.BeanAttributesConfigurator
interface to help configuring a new BeanAttributes instance.

BeanAttributesConfigurator is obtainable during ProcessBeanAttributes event and is therefore
automatically initialized from existing BeanAttributes.

With BeanAttributesConfigurator you can perform the following operations :

Add type with addType or addTransitiveTypeClosure methods.

Set multiple types with types methods.

» Set scope with scope method.

Add a qualifier with addQualifier method.

Set or add multiple qualifiers with addQualifiers and qualifiers methods.

186

* Add a stereotype with addStereotype method.

» Set or add multiple stereotypes with addStereotypes and stereotypes methods.

Set the bean name name method.

Make the bean an alternative with alternative methods.

Make the bean a reserve with reserve methods.

23.6.10. ProcessBean event

The container must fire an event for each bean, interceptor or decorator deployed in a bean
archive, after firing the ProcessBeanAttributes for the bean and before registering the Bean object.

The event object type in the package jakarta.enterprise.inject.spi depends upon what kind of
bean was discovered:

* For a managed bean with bean class X, the container must raise an event of type
ProcessManagedBean<X>.

» For a producer method with method return type T of a bean with bean class X, the container
must raise an event of type ProcessProducerMethod<T, X>.

* For a producer field with field type T of a bean with bean class X, the container must raise an
event of type ProcessProducerField<T, X>.

* For a custom implementation of Bean, the container must raise an event of type
ProcessSyntheticBean<X>.

The interface jakarta.enterprise.inject.spi.ProcessBean is a supertype of all these event types:

public interface ProcessBean<X> {
public Annotated getAnnotated();
public Bean<X> getBean();
public void addDefinitionError(Throwable t);

» getAnnotated() returns the AnnotatedType representing the bean class, the AnnotatedMethod
representing the producer method, or the AnnotatedField representing the producer field. If
invoked upon a ProcessSyntheticBean event, non-portable behavior results and the returned
value should be ignored.

* getBean() returns the Bean object that is about to be registered. The Bean may implement
Interceptor or Decorator.

* addDefinitionError() registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

public interface ProcessManagedBean<X>
extends ProcessBean<X> {
public AnnotatedType<X> getAnnotatedBeanClass();
public InvokerBuilder<Invoker<X, ?>> createInvoker(AnnotatedMethod<? super X>

187

method);
}

The createInvoker method allows creating an InvokerBuilder for the processed bean and the given
target method (see Using InvokerBuilder in CDI Full).

public interface ProcessProducerMethod<T, X>
extends ProcessBean<X> {
public AnnotatedMethod<T> getAnnotatedProducerMethod();
public AnnotatedParameter<T> getAnnotatedDisposedParameter();

public interface ProcessProducerField<T, X>
extends ProcessBean<X> {
public AnnotatedField<T> getAnnotatedProducerField();
public AnnotatedParameter<T> getAnnotatedDisposedParameter();

public interface ProcessSyntheticBean<X>
extends ProcessBean<X> {
public Extension getSource();

If any observer method of a ProcessBean event throws an exception, the exception is treated as a
definition error by the container.

If any ProcessBean method is called outside of the observer method invocation, an
I1legalStateException is thrown.

The container must execute the bean-related part of @Registration phase of build compatible
extensions at this time.

23.6.11. ProcessProducer event

The container must fire an event for each producer method or field of each bean, including
resources.

The event object must be of type jakarta.enterprise.inject.spi.ProcessProducer<T, X>, where T is
the bean class of the bean that declares the producer method or field and X is the return type of the
producer method or the type of the producer field.

public interface ProcessProducer<T, X> {
public AnnotatedMember<T> getAnnotatedMember();
public Producer<X> getProducer();
public void setProducer(Producer<X> producer);
public ProducerConfigurator<X> configureProducer();

188

public void addDefinitionError(Throwable t);

* getAnnotatedMember() returns the AnnotatedField representing the producer field or the
AnnotatedMethod representing the producer method.

* getProducer() returns the Producer object that will be used by the container to call the producer
method or read the producer field.

* setProducer() replaces the Producer.

» configureProducer() returns a ProducerConfigurator (as defined in ProducerConfigurator
interface) initialized with the Producer processed by this event to configure the Producer that will
replace the original one at the end of the observer invocation. Each call returns the same
configurator instance within an observer notification.

* addDefinitionError() registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the Producer by calling either
setProducer() or configureProducer(). If both methods are called within an observer notification an
I1legalStateException is thrown. The container must use the final value of this property, after all
observers have been called, whenever it calls the producer or disposer.

For example, this observer decorates the Producer for all producer methods and fields of type

EntityManager.

void decorateEntityManager(ProcessProducer<?, EntityManager> pp) {
pit.setProducer(decorate(pp.getProducer()));

}

If any observer method of a ProcessProducer event throws an exception, the exception is treated as
a definition error by the container.

If any ProcessProducer method is called outside of the observer method invocation, an
I1legalStateException is thrown.

23.6.11.1. ProducerConfigurator interface

CDI 2.0 introduced the jakarta.enterprise.inject.spi.configurator.ProducerConfigurator interface
to help configuring a Producer instance.

With ProducerConfigurator you can perform the following operations:
* Set a callback to produce a new instance with produceWith() method.

* Set a callback to destroy the produced instance with disposeWith() method.

23.6.12. ProcessObserverMethod event

The container must fire an event for each observer method of each enabled bean, before

189

registering the ObserverMethod object.

The event object must be of type jakarta.enterprise.inject.spi.ProcessObserverMethod<T, X>,
where T is the observed event type of the observer method and X is the bean class of the bean that
declares the observer method.

For a custom implementation of jakarta.enterprise.inject.spi.0ObserverMethod, the container must
raise an event of type jakarta.enterprise.inject.spi.ProcessSyntheticObserverMethod<T, X>, where
T is the observed event type of the observer method and X is the return value of
ObserverMethod.getBeanClass().

public interface ProcessObserverMethod<T, X> {
public AnnotatedMethod<X> getAnnotatedMethod();
public ObserverMethod<T> getObserverMethod();
public void addDefinitionError(Throwable t);
public void setObserverMethod(ObserverMethod<T> observerMethod);
public ObserverMethodConfigurator<T> setObserverMethod();
public void veto();

public interface ProcessSyntheticObserverMethod<T, X> extends ProcessObserverMethod<T,
X> {
public Extension getSource();

* getAnnotatedMethod() returns the AnnotatedMethod representing the observer method. If invoked
upon a ProcessSyntheticObserverMethod event, non-portable behavior results and the returned
value should be ignored.

» getObserverMethod() returns the ObserverMethod object that will be used by the container to call
the observer method.

» addDefinitionError() registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

» setObserverMethod() replaces the ObserverMethod.

» configureObserverMethod() returns an ObserverMethodConfigurator (as defined in
ObserverMethodConfigurator interface) initialized with the ObserverMethod processed by the event
to easily configure the ObserverMethod which will be used to replace the original one at the end
of observer invocation. The method always returns the same ObserverMethodConfigurator.

* veto() forces the container to ignore the ObserverMethod.

* getSource() returns the Extension instance that added the observer method.
Any observer of this event is permitted to wrap and/or replace the ObserverMethod by calling either
setObserverMethod() or configureObserverMethod(). If both methods are called within an observer

notification an IllegalStateException is thrown. The container must use the final value of this
property, after all observers have been called, whenever it performs observer resolution.

190

If any observer method of a ProcessObserverMethod event throws an exception, the exception is
treated as a definition error by the container.

If any ProcessObserverMethod method is called outside of the observer method invocation, an
I1legalStateException is thrown.

The container must execute the observer-related part of @Registration phase of build compatible
extensions at this time.

23.7. Configurators interfaces

CDI 2.0 introduced the following Configurators interface:

* AnnotatedTypeConfigurator SPI for AnnotatedType configuration

* InjectionPointConfigurator interface for InjectionPoint configuration
» BeanAttributesConfigurator interface for BeanAttributes configuration
* BeanConfigurator interface for Bean configuration

* ObserverMethodConfigurator interface for ObserverMethod configuration
* ProducerConfigurator interface for Producer configuration

The container must provide implementation for all these configurators and make them available in
matching container lifecycle events as defined in Container lifecycle events.

23.8. The InterceptionFactory interface

CDI 2.0 introduces the jakarta.enterprise.inject.spi.InterceptionFactory<T> interface, which
allows to create a wrapper instance whose method invocations are intercepted by method
interceptors and forwarded to a provided instance.

public interface InterceptionFactory<T> {
InterceptionFactory<T> ignoreFinalMethods();
AnnotatedTypeConfigurator<T> configure();
T createlnterceptedInstance(T instance);

* ignoreFinalMethods() instructs the container to ignore all non-static, final methods with public,
protected or default visibility declared by any class in the type hierarchy of the intercepted
instance during invocation of createInterceptedInstance() method. Ignored methods should
never be invoked upon the wrapper instance. Otherwise, unpredictable behavior results.

» configure() returns an AnnotatedTypeConfigurator (as defined in AnnotatedTypeConfigurator SPI)
initialized with the AnnotatedType created either for the «class passed to
BeanManager.createInterceptionFactory(CreationalContext, (lass) or derived from the
InterceptionFactory parameter injection point. The method always return the same
AnnotatedTypeConfigurator

» createlnterceptedInstance() returns a wrapper instance whose method invocations are

191

intercepted by method interceptors and forwarded to a provided instance. The method can be
only called once, subsequent calls will throw an IllegalStateException. If the type of the
instance is not proxyable as defined in Unproxyable bean types an
UnproxyableResolutionException exception is thrown. This rule can be loosen by calling
ignoreFinalMethods() before this method. If the provided instance is an internal container
construct (such as client proxy), non-portable behavior results.

An InterceptionFactory can be obtained be calling BeanManager.createInterceptionFactory() as
defined in Obtain an InterceptionFactory.

The container must provide a built-in bean with scope @Dependent, bean type InterceptionFactory
and qualifier @Default.

If an injection point of type InterceptionFactory and qualifier @Default exists and is not a parameter
of a producer method, the container automatically detects the problem and treats it as a definition
error.

If an injection point of type InterceptionFactory has a type parameter that is not a Java class, non-
portable behavior results.

The following example demonstrates a producer method definition using InterceptionFactory. The
produced bean instance will be a wrapper of Product with single interceptor associated by
ActionBinding:

public Product createInterceptedProduct(InterceptionFactory<Product>

interceptionFactory) {
interceptionFactory.configure().add(ActionBinding.Literal.INSTANCE);
return interceptionFactory.createlnterceptedInstance(new Product());

}

192

Chapter 24. Packaging and deployment in
CDI Full

This chapter replaces Packaging and deployment for the purpose of CDI Full. The Packaging and
deployment chapter should be considered merely informative. In CDI Full, the term deployment
time always means during application startup.

When an application is started, the container must perform bean discovery, detect definition errors
and deployment problems and raise events that allow portable extensions to integrate with the
deployment lifecycle.

Bean discovery is the process of determining:

* The bean archives that exist in the application, and the beans they contain
* Which alternatives, reserves, interceptors and decorators are enabled for each bean archive

* The ordering of enabled interceptors and decorators

Additional beans may be registered programmatically with the container by the application or a
portable extension after the automatic bean discovery completes. Portable extensions may even
integrate with the process of building the Bean object for a bean, to enhance the container’s built-in
functionality.

24.1. Bean archives in CDI Full

Bean classes of enabled beans must be deployed in bean archives.

A bean archive has a bean discovery mode of all, annotated or none. A bean archive which contains
non-empty beans.xml must specify the bean-discovery-mode attribute. The default value for the
attribute is annotated.

An archive which:

e contains a beans.xml file with the bean-discovery-mode of none, or,

 contains a portable extension or a build compatible extension and no beans.xml file
is not a bean archive.

An explicit bean archive is an archive which contains a beans.xml file with bean-discovery-mode of
all.

An implicit bean archive is:

 an archive which contains a beans.xml file that is empty, or,

* any other archive which contains one or more bean classes with a bean defining annotation as
defined in Bean defining annotations.

When determining which archives are bean archives, the container must consider:

193

* Library jars

* Directories in the JVM classpath
Non Jakarta EE containers may or may not provide support for war, EJB jar or rar bean archives.
The beans. xml file must be named:

* META-INF/beans.xml.

For compatibility with CDI versions prior to 4.0, CDI Full products must contain an option that
causes an archive with empty beans.xml to be considered an explicit bean archive.

The container searches for beans in all bean archives in the application classpath.

If a bean class is deployed in two different bean archives, non-portable behavior results. Portable
applications must deploy each bean class in no more than one bean archive.

Explicit bean archives may contain classes which are not deployed as beans. For example a bean
archive might contain an abstract class not annotated with @Decorator.

Implicit bean archives are likely to contain classes which are not deployed as beans.

An extension may be deployed in any archive, including those that are not bean archives.

24.2. Application initialization lifecycle in CDI Full
When an application is started, the container performs the following steps:

* First, the container must search for service providers for the service
jakarta.enterprise.inject.spi.Extension defined in Container lifecycle events, instantiate a
single instance of each service provider, and search the service provider class for observer
methods of initialization events.

* Next, the container must fire an event of type BeforeBeanDiscovery, as defined in
BeforeBeanDiscovery event.

* Next, the container must perform type discovery, as defined in Type discovery in CDI Full.

* Next, the container must fire an event of type AfterTypeDiscovery, as defined in
AfterTypeDiscovery event.

* Next, the container must perform bean discovery, as defined in Bean discovery in CDI Full.

* Next, the container must fire an event of type AfterBeanDiscovery, as defined in
AfterBeanDiscovery event, and abort initialization of the application if any observer registers a
definition error.

* Next, the container must detect deployment problems by validating bean dependencies,
specialization and invoker lookups and abort initialization of the application if any deployment
problems exist, as defined in Problems detected automatically by the container.

* Next, the container must fire an event of type AfterDeploymentValidation, as defined in
AfterDeploymentValidation event, and abort initialization of the application if any observer
registers a deployment problem.

194

 Finally, the container begins directing requests to the application.

24.3. Application shutdown lifecycle in CDI Full
When an application is stopped, the container performs the following steps:

* First, the container must destroy all contexts.

* Finally, the container must fire an event of type BeforeShutdown, as defined in BeforeShutdown
event.

24.4. Type and Bean discovery in CDI Full

The container automatically discovers managed beans (according to the rules of Which Java classes
are managed beans?) in bean archives and searches the bean classes for producer methods,
producer fields, disposer methods and observer methods.

24.4.1. Type discovery in CDI Full
First the container must discover types. The container discovers:
* each Java class, interface (excluding the special kind of interface declaration annotation type) or

enum deployed in an explicit bean archive, and

» each Java class with a bean defining annotation in an implicit bean archive,
that is not excluded from discovery by an exclude filter as defined in Exclude filters.

Then, for every type discovered the container must create an AnnotatedType representing the type
and fire an event of type ProcessAnnotatedType, as defined in ProcessAnnotatedType event.

If an extension calls BeforeBeanDiscovery.addAnnotatedType() or
AfterTypeDiscovery.addAnnotatedType(), the type passed must be added to the set of discovered
types and the container must fire an event of type ProcessSyntheticAnnotatedType for every type
added, as defined in ProcessAnnotatedType event+

24.4.2. Exclude filters

Exclude filters are defined by <exclude> elements in the beans.xml for the bean archive as children
of the <scan> element. By default an exclude filter is active. If the exclude filter definition contains:

e a child element named <if-class-available> with a name attribute, and the classloader for the
bean archive can not load a class for that name, or

e a child element named <if-class-not-available> with a name attribute, and the classloader for
the bean archive can load a class for that name, or

a child element named <if-system-property> with a name attribute, and there is no system
property defined for that name, or

a child element named <if-system-property> with a name attribute and a value attribute, and
there is no system property defined for that name with that value.

195

then the filter is inactive.
If the filter is active, and:

* the fully qualified name of the type being discovered matches the value of the name attribute of
the exclude filter, or

 the package name of the type being discovered matches the value of the name attribute with a
suffix ".*" of the exclude filter, or

* the package name of the type being discovered starts with the value of the name attribute with
a suffix ".**" of the exclude filter

then we say that the type is excluded from discovery.

For example, consider the follow beans.xml file:

<?xml version="1.0" encoding="UTF-8"7>

<beans xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/beans_3_0.xsd"
bean-discovery-mode="all" version="3.0">

<scan>
<exclude name="com.acme.rest.*" />

<exclude name="com.acme.faces.**">
<if-class-not-available name="jakarta.faces.context.FacesContext"/>
</exclude>

<exclude name="com.acme.verbose.*">
<if-system-property name="verbosity" value="low"/>
</exclude>

<exclude name="com.acme.ejb.**">
<if-class-available name="jakarta.enterprise.inject.Model"/>
<if-system-property name="exclude-ejbs"/>
</exclude>
</scan>

</beans>

The first exclude filter will exclude all classes in com.acme.rest package. The second exclude filter
will exclude all classes in the com.acme.faces package, and any subpackages, but only if JSF is not
available. The third exclude filter will exclude all classes in the com.acme.verbose package if the
system property verbosity has the value low. The fourth exclude filter will exclude all classes in the
com.acme.ejb package, and any subpackages if the system property exclude-ejbs is set (with any
value) and at the same time, the jakarta.enterprise.inject.Model class is available to the
classloader.

196

24.4.3. Trimmed bean archive

An explicit bean archive may be marked as 'trimmed' by adding the <trim /> element to its
beans.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/beans_3_0.xsd"
version="3.0">

<trim/>
</beans>

If an explicit bean archive contains the <trim/> element in its beans.xml file, types that don’t have
either a bean defining annotation (as defined in Bean defining annotations) or any scope
annotation, are removed from the set of discovered types.

24.4.4. Bean discovery in CDI Full

For every type in the set of discovered types (as defined in Type discovery in CDI Full), the
container must:

* inspect the type metadata to determine if it is a bean, and then

* detect definition errors by validating the class and its metadata, and then

o if the class is a managed bean, fire an event of type ProcessInjectionPoint for each injection
point in the class, as defined in ProcessInjectionPoint event, and then

o if the class is a managed bean, fire an event of type ProcessInjectionTarget, as defined in
ProcessInjectionTarget event, and then

* determine which alternatives, reserves, interceptors and decorators are enabled, according to
the rules defined in Enabled and disabled beans, Interceptor enablement and ordering in CDI
Full and Decorator enablement and ordering, and then

« if the class is an enabled bean, interceptor or decorator, fire an event of type
ProcessBeanAttributes, as defined in ProcessBeanAttributes event, and then

« if the class is an enabled bean, interceptor or decorator and if ProcessBeanAttributes.veto()
wasn’t called in previous step, fire an event which is a subtype of ProcessBean, as defined in
ProcessBean event.

For each enabled bean, the container must search the class for producer methods and fields, as
defined in Producer methods and in Producer fields, including resources, and for each producer:

« if it is a producer method, fire an event of type ProcessInjectionPoint for each injection point in
the method parameters, as defined in ProcessInjectionPoint event, and then

* fire an event of type ProcessProducer, as defined in ProcessProducer event, and then

197

o if the producer method or field is enabled, fire an event of type ProcessBeanAttributes, as
defined in ProcessBeanAttributes event, and then

¢ if the producer method or field is enabled and if ProcessBeanAttributes.veto() wasn’t called in

previous step, fire an event which is a subtype of ProcessBean, as defined in ProcessBean event.

For each enabled bean, the container must search for disposer methods as defined in Disposer
methods, and for each disposer method:

* fire an event of type ProcessInjectionPoint for each injection point in the method parameters,
as defined in ProcessInjectionPoint event.

For each enabled bean, the container must search the class for observer methods, and for each
observer method:

* fire an event of type ProcessInjectionPoint for each injection point in the method parameters,
as defined in ProcessInjectionPoint event, and then

* fire an event of type ProcessObserverMethod, as defined in ProcessObserverMethod event.
Then, the container registers the Bean and ObserverMethod objects:
* For each enabled bean that is not an interceptor or decorator, the container registers an

instance of the Bean interface defined in The Bean interface.

» For each enabled interceptor, the container registers an instance of the Interceptor interface
defined in The Interceptor interface.

* For each enabled decorator, the container registers an instance of the Decorator interface
defined in The Decorator interface.

» For each observer method of every enabled bean, the container registers an instance of the
ObserverMethod interface defined in The ObserverMethod interface.

198

PartII - CDI in Java SE

This part of the document specifies additional rules and features when using CDI in Java SE. All
content defined in Part I - Core CDI applies to this part.

CDI implementations that support the Java SE API are required to support CDI Full.

199

Chapter 25. Bootstrapping a CDI container in
Java SE

In Java SE, the CDI container must be explicitly bootstrapped by the user. This is performed by the
SeContainerInitializer abstract class and its static method newInstance().

SeContainerInitializer is a service provider of the service
jakarta.enterprise.inject.se.SeContainerInitializer declared in META-INF/services. This class
allows a wuser to configure the CDI container before it 1is bootstrapped. The
SeContainerInitializer.initialize() method bootstraps the container and returns a SeContainer
instance.

User can shutdown the container manually by calling the close() method on SeContainer or
automatically using try-with-resources since SeContainer extends AutoCloseable interface.

25.1. SeContainerInitializer class

CDI container can be configured and bootstrapped from
jakarta.enterprise.inject.se.SeContainerInitializer abstract class.

A CDI implementation is required to provide an implementation of SeContainerInitializer declared
as a service provider. Static method newInstance() uses Java service provider mechanism to obtain
an implementation of SeContainerInitializer and return an instance of it. There must be exactly
one provider available, otherwise an I11legalStateException is thrown.

SeContainerInitializer configuration allows explicit addition of elements to the set of automatically
discovered elements. These additions are done in an internal synthetic bean archive that is added
to the set of bean archives discovered by the container during deployment.

This synthetic bean archive behaves like an explicit bean archive (as defined in Bean archives in
CDI Full).

public abstract class SeContainerInitializer {

public static SeContainerInitializer newInstance() { ... }

public SeContainerInitializer addBeanClasses((lass<?>... classes);

public SeContainerInitializer addPackages(Class<?>... packageClasses);

public SeContainerInitializer addPackages(boolean scanRecursively, Class<?>...
package(lasses);

public SeContainerInitializer addPackages(Package... packages);

public SeContainerInitializer addPackages(boolean scanRecursively, Package...
packages);

public SeContainerInitializer addExtensions(Extension... extensions);

public SeContainerInitializer addExtensions(Class<? extends Extension>...
extensions);

public SeContainerInitializer addBuildCompatibleExtensions(Class<? extends
BuildCompatibleExtension>... extensions);

public SeContainerInitializer enablelnterceptors(Class<?>... interceptorClasses);

public SeContainerInitializer enableDecorators(Class<?>... decorator(Classes);

200

public SeContainerInitializer selectAlternatives(Class<?>... alternativeClasses);

public SeContainerInitializer selectAlternativeStereotypes(Class<? extends
Annotation>... alternativeStereotype(Classes);

public SeContainerInitializer addProperty(String key, Object value);

public SeContainerInitializer setProperties(Map<String, Object> properties);

public SeContainerInitializer disableDiscovery();

public SeContainerInitializer setClassLoader(ClassLoader classlLoader);

public SeContainer initialize();

Unless specified differently each method of SeContainerInitializer returns the current
SeContainerInitializer object.

* newInstance() static method returns an instance of the implementation of
SeContainerInitializer discovered by Java service provider. Each call returns a new instance of
SeContainerInitializer. This method throws IllegalStateException if called in Jakarta EE
container.

» addBean(Classes() adds classes to the the synthetic bean archive

» addPackages() adds packages content to the synthetic bean archive. There are other versions of
this method, which enables user to add a package according to class or classes it contains and
also to add packages recursively.

 addExtensions() adds the provided portable extensions (class or instance) to the synthetic bean
archive.

* addBuildCompatibleExtensions() adds the provided build compatible extensions (classes) to the
synthetic bean archive.

* enablelnterceptors() adds interceptor classes to the list of enabled interceptors for the synthetic
bean archive.

* enableDecorators() adds decorator classes to the list of enabled decorators for the synthetic
bean archive.

e selectAlternatives() adds alternatives classes to the list of selected alternatives for the
synthetic bean archive.

» selectAlternativeStereotypes() adds alternative stereotype classes to the list of selected
alternative stereotypes for the synthetic bean archive.

* addProperty() adds a configuration property to the container

» setProperties() sets the Map of configuration properties for the container. Original properties
Map is replaced by a new instance.

 disableDiscovery() deactivates automatic type scanning and discovery. All bean archives will be
ignored except the implicit bean archive.

» set(lassLoader () changes the default class loader for the container

* initialize() bootstraps the container and returns a SeContainer as defined in SeContainer
interface.

Every invocation of the SeContainerInitializer.initialize() method returns a new SeContainer

201

instance. The application context is started automatically by the container on start up. An
implementation does not need to support multiple calls of SeContainerInitializer.initialize()
method when the SeContainer is running.

25.2. SeContainer interface

The jakarta.enterprise.inject.se.SeContainer interface provides access to the BeanManager and
programmatic lookup as defined in The Instance interface. SeContainer also extends AutoCloseable,
so when dereferenced, it should shutdown automatically.

public interface SeContainer extends Instance<Object>,AutoCloseable {
void close();
boolean isRunning();
BeanManager getBeanManager();

* close() method explicitly shuts down the container. If it is called and the container was already
shutdown, it throws an I1legalStateException.

* isRunning() method returns true if called before container shuts down and false after.

* getBeanManager () method returns the BeanManager (as defined in The BeanManager object) for the
running container. If it is called and the container was already shutdown, it throws an
I1legalStateException.

SeContainer implements jakarta.enterprise.inject.Instance and therefore might be used to
perform programmatic lookup as defined in The Instance interface. If no qualifier is passed to
SeContainer.select() method, the @Default qualifier is assumed.

If any Instance.select() method is called and the container was already shutdown, the
I1legalStateException is thrown.

The following code examples demonstrate the options of handling container shutdown:

public static void main(String... args) {
SeContainerInitializer containerInit = SeContainerInitializer.newInstance();
SeContainer container = containerInit.initialize();
// retrieve a bean and do work with it
MyBean myBean = container.select(MyBean.class).get();
myBean.doWork();
// when done
container.close();

public static void main(String... args) {
try(SeContainer container = SeContainerInitializer.newInstance().initialize()) {
// start the container, retrieve a bean and do work with it
MyBean myBean = container.select(MyBean.class).get();

202

myBean.doWork();
}

// shuts down automatically after the try with resources block.

203

Chapter 26. Scopes and contexts in Java SE

26.1. Context management for built-in scopes in Java
SE

When running in Java SE, the container must extend the rules defined in Context management for
built-in scopes and is also required to ensure the following rules for built-in context
implementation.

26.1.1. Application context lifecycle in Java SE

When running in Java SE the container must extend the rules defined in Application context
lifecycle and is also required to ensure the following rules.

The application scope is active:
* during any method invocation

The application context is shared between all method invocations that execute within the same
container.

The application context is destroyed when the container is shut down.
The payload of the event fired when the application context is initialized or destroyed is:

* any java.lang.Object.

204

Chapter 27. Packaging and deployment in
Java SE

27.1. Bean archive in Java SE

When running in Java SE, the container must extend the rules defined in Bean archives in CDI Full
and also ensure that :

An archive which doesn’t contain a beans.xml file can’t be discovered as an implicit bean archive
unless:

* the application is launched with system property jakarta.enterprise.inject.scan.implicit set
to true, or

* the container was initialized with a map containing an entry parameter with
jakarta.enterprise.inject.scan.implicit as key and Boolean.TRUE as value.

205

Chapter 28. Portable extensions in Java SE

28.1. The BeanManager object in Java SE

28.1.1. Obtaining a reference to the CDI container in Java SE

In Java SE, while the access to CDI container and BeanManager described in Obtaining a reference to
the CDI container is available, the preferred way to access them is through SeContainer interface as

described in SeContainer interface.

206

	Jakarta Contexts and Dependency Injection
	Table of Contents
	Preface
	Evaluation license
	Organisation of this document
	Major changes
	Jakarta Contexts and Dependency Injection 4.1
	Jakarta Contexts and Dependency Injection 4.0
	Jakarta Contexts and Dependency Injection 3.0

	Introduction
	Chapter 1. Architecture
	1.1. Contracts
	1.2. Relationship to other specifications
	1.2.1. Relationship to the Jakarta EE platform specification
	1.2.2. Relationship to Jakarta Enterprise Bean
	1.2.3. Relationship to Jakarta Dependency Injection
	1.2.4. Relationship to Jakarta Interceptors
	1.2.5. Relationship to Jakarta Faces
	1.2.6. Relationship to Jakarta Validation

	1.3. Introductory examples
	1.3.1. Jakarta Faces example
	1.3.2. Jakarta Enterprise Bean example
	1.3.3. Jakarta EE component environment example
	1.3.4. Event example
	1.3.5. Injection point metadata example
	1.3.6. Interceptor example
	1.3.7. Decorator example

	Part I - Core CDI
	Structure

	Part I.A - CDI Lite
	Chapter 2. Concepts
	2.1. Functionality provided by the container to the bean
	2.2. Bean types
	2.2.1. Legal bean types
	2.2.2. Restricting the bean types of a bean
	2.2.3. Typecasting between bean types

	2.3. Qualifiers
	2.3.1. Built-in qualifier types
	2.3.2. Defining new qualifier types
	2.3.3. Declaring the qualifiers of a bean
	2.3.4. Specifying qualifiers of an injected field
	2.3.5. Specifying qualifiers of a method or constructor parameter
	2.3.6. Repeating qualifiers

	2.4. Scopes
	2.4.1. Built-in scope types
	2.4.2. Defining new scope types
	2.4.3. Declaring the bean scope
	2.4.4. Default scope

	2.5. Default bean discovery mode
	2.5.1. Bean defining annotations

	2.6. Bean names
	2.6.1. Declaring the bean name
	2.6.2. Default bean names
	2.6.3. Beans with no name

	2.7. Alternatives
	2.7.1. Declaring an alternative

	2.8. Reserves
	2.8.1. Declaring a reserve

	2.9. Stereotypes
	2.9.1. Defining new stereotypes
	2.9.2. Declaring the stereotypes for a bean
	2.9.3. Built-in stereotypes

	2.10. Problems detected automatically by the container

	Chapter 3. Programming model
	3.1. Managed beans
	3.1.1. Which Java classes are managed beans?
	3.1.2. Bean types of a managed bean
	3.1.3. Declaring a managed bean
	3.1.4. Default bean name for a managed bean

	3.2. Producer methods
	3.2.1. Bean types of a producer method
	3.2.2. Declaring a producer method
	3.2.3. Default bean name for a producer method

	3.3. Producer fields
	3.3.1. Bean types of a producer field
	3.3.2. Declaring a producer field
	3.3.3. Default bean name for a producer field

	3.4. Disposer methods
	3.4.1. Disposed parameter of a disposer method
	3.4.2. Declaring a disposer method
	3.4.3. Disposer method resolution

	3.5. Bean constructors
	3.5.1. Declaring a bean constructor

	3.6. Injected fields
	3.6.1. Declaring an injected field

	3.7. Initializer methods
	3.7.1. Declaring an initializer method

	3.8. The default qualifier at injection points
	3.9. The qualifier @Named at injection points
	3.10. Unproxyable bean types

	Chapter 4. Inheritance
	4.1. Inheritance of type-level metadata
	4.2. Inheritance of member-level metadata

	Chapter 5. Dependency injection and lookup
	5.1. Modularity
	5.1.1. Declaring selected alternatives
	5.1.2. Declaring selected reserves
	5.1.3. Enabled and disabled beans
	5.1.4. Inter-module injection

	5.2. Typesafe resolution
	5.2.1. Performing typesafe resolution
	5.2.2. Unsatisfied and ambiguous dependencies
	5.2.3. Legal injection point types
	5.2.4. Assignability of raw and parameterized types
	5.2.5. Primitive types and null values
	5.2.6. Qualifier annotations with members
	5.2.7. Multiple qualifiers

	5.3. Name resolution
	5.3.1. Ambiguous names

	5.4. Client proxies
	5.4.1. Client proxy invocation

	5.5. Dependency injection
	5.5.1. Injection using the bean constructor
	5.5.2. Injection of fields and initializer methods
	5.5.3. Destruction of dependent objects
	5.5.4. Invocation of producer or disposer methods
	5.5.5. Access to producer field values
	5.5.6. Invocation of observer methods
	5.5.7. Injection point metadata
	5.5.8. Bean metadata

	5.6. Programmatic lookup
	5.6.1. The Instance interface
	5.6.2. The built-in Instance
	5.6.3. Using AnnotationLiteral and TypeLiteral
	5.6.4. Built-in annotation literals

	Chapter 6. Scopes and contexts
	6.1. The Contextual interface
	6.1.1. The CreationalContext interface

	6.2. The Context interface
	6.3. Normal scopes and pseudo-scopes
	6.4. Dependent pseudo-scope
	6.4.1. Dependent objects
	6.4.2. Destruction of objects with scope @Dependent

	6.5. Contextual instances and contextual references
	6.5.1. The active context object for a scope
	6.5.2. Activating Built In Contexts
	6.5.3. Contextual instance of a bean
	6.5.4. Contextual reference for a bean
	6.5.5. Contextual reference validity
	6.5.6. Injectable references
	6.5.7. Injectable reference validity

	6.6. Context management for built-in scopes
	6.6.1. Request context lifecycle
	6.6.2. Application context lifecycle

	6.7. Context management for custom scopes

	Chapter 7. Lifecycle of contextual instances
	7.1. Restriction upon bean instantiation
	7.2. Container invocations and interception
	7.3. Lifecycle of contextual instances
	7.3.1. Lifecycle of managed beans
	7.3.2. Lifecycle of producer methods
	7.3.3. Lifecycle of producer fields

	Chapter 8. Interceptor bindings
	8.1. Interceptor binding types
	8.1.1. Interceptor bindings for stereotypes

	8.2. Declaring the interceptor bindings of an interceptor
	8.3. Binding an interceptor to a bean
	8.4. Interceptor resolution

	Chapter 9. Events
	9.1. Event types and qualifier types
	9.2. Firing events
	9.2.1. Firing events synchronously
	9.2.2. Firing events asynchronously
	9.2.3. The Event interface
	9.2.4. The built-in Event

	9.3. Observer resolution
	9.3.1. Assignability of type variables, raw and parameterized types
	9.3.2. Event qualifier types with members
	9.3.3. Multiple event qualifiers

	9.4. Observer methods
	9.4.1. Event parameter of an observer method
	9.4.2. Declaring an observer method
	9.4.3. The EventMetadata interface
	9.4.4. Conditional observer methods
	9.4.5. Transactional observer methods

	9.5. Observer notification
	9.5.1. Handling exceptions thrown during an asynchronous event
	9.5.2. Observer ordering
	9.5.3. Observer method invocation context

	9.6. Observable container lifecycle events
	9.6.1. Startup event
	9.6.2. Shutdown event

	Chapter 10. Method invokers
	10.1. Building an Invoker
	10.2. Using an Invoker
	10.2.1. Behavior of invoke()
	10.2.2. Example

	10.3. Using InvokerBuilder
	10.3.1. Configuring invoker lookups

	Chapter 11. Programmatic access to container
	11.1. The BeanContainer object
	11.1.1. Obtaining a reference to the CDI container
	11.1.2. Obtaining a contextual reference for a bean
	11.1.3. Obtaining a CreationalContext
	11.1.4. Obtaining a Bean by type
	11.1.5. Obtaining a Bean by name
	11.1.6. Resolving an ambiguous dependency
	11.1.7. Firing an event
	11.1.8. Observer method resolution
	11.1.9. Interceptor resolution
	11.1.10. Determining if an annotation is a qualifier type, scope type, stereotype or interceptor binding type
	11.1.11. Obtaining the active Context for a scope
	11.1.12. Obtaining Contexts for a scope
	11.1.13. Obtain an Instance
	11.1.14. Assignability of beans and events
	11.1.15. Unwrapping a client proxy

	Chapter 12. Build compatible extensions
	12.1. The BuildCompatibleExtension interface
	12.2. The @Discovery phase
	12.3. The @Enhancement phase
	12.4. The @Registration phase
	12.5. The @Synthesis phase
	12.6. The @Validation phase

	Chapter 13. Packaging and deployment
	13.1. Bean archives
	13.2. Deployment
	13.3. Application initialization lifecycle
	13.4. Application shutdown lifecycle
	13.5. Type and Bean discovery
	13.5.1. Type discovery
	13.5.2. Bean discovery

	Part I.B - CDI Full
	Chapter 14. Scopes in CDI Full
	14.1. Built-in scope types in CDI Full
	14.2. Bean defining annotations in CDI Full
	14.2.1. Built-in stereotypes in CDI Full

	Chapter 15. Inheritance and specialization in CDI Full
	15.1. Specializing a managed bean
	15.2. Specializing a producer method
	15.3. Specialization
	15.3.1. Direct and indirect specialization

	Chapter 16. Dependency injection and lookup in CDI Full
	16.1. Modularity in CDI Full
	16.1.1. Declaring selected alternatives in CDI Full
	16.1.2. Enabled and disabled beans in CDI Full
	16.1.3. Inconsistent specialization
	16.1.4. Inter-module injection in CDI Full

	16.2. Typesafe resolution in CDI Full
	16.2.1. Performing typesafe resolution in CDI Full
	16.2.2. Unsatisfied and ambiguous dependencies in CDI Full
	16.2.3. Assignability of raw and parameterized types in CDI Full

	16.3. Client proxies in CDI Full
	16.4. Dependency injection in CDI Full
	16.4.1. Injection point metadata in CDI Full
	16.4.2. Bean metadata in CDI Full

	16.5. Programmatic lookup in CDI Full
	16.5.1. The Instance interface in CDI Full
	16.5.2. The built-in Instance in CDI Full

	Chapter 17. Scopes and contexts in CDI Full
	17.1. The Contextual interface in CDI Full
	17.2. The Context interface in CDI Full
	17.3. Dependent pseudo-scope in CDI Full
	17.3.1. Dependent objects in CDI Full

	17.4. Contextual instances and contextual references in CDI Full
	17.4.1. Contextual instance of a bean in CDI Full

	17.5. Passivation and passivating scopes
	17.5.1. Passivation capable beans
	17.5.2. Passivation capable injection points
	17.5.3. Passivation capable dependencies
	17.5.4. Passivating scopes
	17.5.5. Validation of passivation capable beans and dependencies

	17.6. Context management for built-in scopes in CDI Full
	17.6.1. Session context lifecycle
	17.6.2. Conversation context lifecycle
	17.6.3. The Conversation interface

	17.7. Context management for custom scopes in CDI Full

	Chapter 18. Lifecycle of contextual instances in CDI Full
	18.1. Container invocations and interception in CDI Full

	Chapter 19. Interceptor bindings in CDI Full
	19.1. Binding an interceptor to a bean in CDI Full
	19.2. Interceptor enablement and ordering in CDI Full
	19.3. Interceptor resolution in CDI Full

	Chapter 20. Decorators
	20.1. Decorator beans
	20.1.1. Declaring a decorator
	20.1.2. Decorator delegate injection points
	20.1.3. Decorated types of a decorator

	20.2. Decorator enablement and ordering
	20.2.1. Decorator enablement and ordering for an application
	20.2.2. Decorator enablement and ordering for a bean archive

	20.3. Decorator resolution
	20.3.1. Assignability of raw and parameterized types for delegate injection points

	20.4. Decorator invocation
	20.5. Additional decorator rules
	20.5.1. Bean names
	20.5.2. Alternatives
	20.5.3. Reserves

	20.6. Managed beans
	20.7. Producer methods
	20.8. Producer fields
	20.9. Disposer methods
	20.10. Unproxyable bean types

	Chapter 21. Events in CDI Full
	21.1. Firing events in CDI Full
	21.1.1. The built-in Event in CDI Full

	21.2. Observer resolution in CDI Full
	21.3. Observer methods in CDI Full
	21.3.1. Declaring an observer method in CDI Full

	21.4. Observer notification in CDI Full

	Chapter 22. Method invokers in CDI Full
	22.1. Building an Invoker in CDI Full
	22.2. Using InvokerBuilder in CDI Full

	Chapter 23. Portable extensions
	23.1. The Bean interface
	23.1.1. The Decorator interface
	23.1.2. The Interceptor interface
	23.1.3. The ObserverMethod interface
	23.1.4. The Prioritized interface

	23.2. The Producer and InjectionTarget interfaces
	23.3. The BeanManager object
	23.3.1. Obtaining a reference to the CDI container in CDI Full
	23.3.2. Obtaining an injectable reference
	23.3.3. Obtaining non-contextual instance
	23.3.4. Obtaining a Bean by type in CDI Full
	23.3.5. Obtaining a Bean by name in CDI Full
	23.3.6. Obtaining a passivation capable bean by identifier
	23.3.7. Validating an injection point
	23.3.8. Decorator resolution
	23.3.9. Interceptor resolution in CDI Full
	23.3.10. Determining if an annotation is a qualifier type, scope type, stereotype or interceptor binding type in CDI Full
	23.3.11. Determining the hash code and equivalence of qualifiers and interceptor bindings
	23.3.12. Obtaining an AnnotatedType for a class
	23.3.13. Obtaining an InjectionTarget for a class
	23.3.14. Obtaining a Producer for a field or method
	23.3.15. Obtaining an InjectionPoint
	23.3.16. Obtaining a BeanAttributes
	23.3.17. Obtaining a Bean
	23.3.18. Obtaining the instance of an Extension
	23.3.19. Obtain an InterceptionFactory
	23.3.20. Obtain an Instance in CDI Full

	23.4. Unified EL integration API
	23.5. Alternative metadata sources
	23.5.1. AnnotatedTypeConfigurator SPI

	23.6. Container lifecycle events
	23.6.1. BeforeBeanDiscovery event
	23.6.2. AfterTypeDiscovery event
	23.6.3. AfterBeanDiscovery event
	23.6.4. AfterDeploymentValidation event
	23.6.5. BeforeShutdown event
	23.6.6. ProcessAnnotatedType event
	23.6.7. ProcessInjectionPoint event
	23.6.8. ProcessInjectionTarget event
	23.6.9. ProcessBeanAttributes event
	23.6.10. ProcessBean event
	23.6.11. ProcessProducer event
	23.6.12. ProcessObserverMethod event

	23.7. Configurators interfaces
	23.8. The InterceptionFactory interface

	Chapter 24. Packaging and deployment in CDI Full
	24.1. Bean archives in CDI Full
	24.2. Application initialization lifecycle in CDI Full
	24.3. Application shutdown lifecycle in CDI Full
	24.4. Type and Bean discovery in CDI Full
	24.4.1. Type discovery in CDI Full
	24.4.2. Exclude filters
	24.4.3. Trimmed bean archive
	24.4.4. Bean discovery in CDI Full

	Part II - CDI in Java SE
	Chapter 25. Bootstrapping a CDI container in Java SE
	25.1. SeContainerInitializer class
	25.2. SeContainer interface

	Chapter 26. Scopes and contexts in Java SE
	26.1. Context management for built-in scopes in Java SE
	26.1.1. Application context lifecycle in Java SE

	Chapter 27. Packaging and deployment in Java SE
	27.1. Bean archive in Java SE

	Chapter 28. Portable extensions in Java SE
	28.1. The BeanManager object in Java SE
	28.1.1. Obtaining a reference to the CDI container in Java SE

